

Welcome to topologic’s documentation!

Contents:

	Tutorials [https://github.com/microsoft/topologic/tree/master/notebooks]

	topologic Library Documentation
	topologic package

System Requirements

	System Requirements
	Windows

	Ubuntu Linux

Release Notes:

	Release Notes

Indices and tables

	Index

	Module Index

	Search Page

topologic Library Documentation

	topologic package
	Subpackages
	topologic.embedding package
	Subpackages

	topologic.embedding.clustering package

	topologic.embedding.distance package

	topologic.embedding.metric package

	topologic.io package

	topologic.partition package

	topologic.projection package

	topologic.similarity package

	topologic.statistics package

topologic package

	
topologic.connected_components_generator(graph: networkx.classes.graph.Graph) → Generator[networkx.classes.graph.Graph, None, None]

	Returns a Generator that will provide each component as a networkx.Graph copy

	Parameters

	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The networkx graph object to create a connected component generator from

	Returns

	A Generator that returns a copy of the subgraph corresponding to a connected component
of graph

	Return type

	Generator[networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]]

	
exception topologic.DialectException(message)

	Bases: BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]

	
exception topologic.InvalidGraphError(message)

	Bases: BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]

	
topologic.largest_connected_component(graph: networkx.classes.graph.Graph, weakly: bool = True) → networkx.classes.graph.Graph

	Returns the largest connected component of the graph.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The networkx graph object to select the largest connected component from.
Can be either directed or undirected.

	weakly (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to find weakly connected components or strongly connected components for directed
graphs.

	Returns

	A copy of the largest connected component as an nx.Graph object

	Return type

	networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]

	
topologic.number_connected_components(graph: networkx.classes.graph.Graph) → int

	Returns the number of connected components in the Graph.

This function calls the appropriate newtorkx connected components function depending on whether it is Undirected
or Directed.

	Parameters

	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The networkx graph object to determine the number of connected components for

	Returns

	number of connected components (and in the case of a directed graph, strongly connected)

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
class topologic.PartitionedGraph

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

A PartitionedGraph combines a networkx graph object with
a global community partitioning for that graph.

	
community_partitions

	Alias for field number 1

	
graph

	Alias for field number 0

	
topologic.self_loop_augmentation(graph: networkx.classes.graph.Graph, weight_column: str = 'weight') → networkx.classes.graph.Graph

	Generates a self loop for each vertex in the graph with a generated weight for each vertex that is the ratio
between its degree in the graph and the total number of other vertices in the graph, excluding the original
self loop.

This should be used prior to Spectral Embedding techniques to ensure that there is a reasonable value for
each vertex as it will appear in an adjacency matrix.

Modifies the provided graph in place as well as returning it.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The networkx graph to diagonally augment

	weight_column (str [https://docs.python.org/3/library/stdtypes.html#str]) – The weight column to augment

	Returns

	The networkx Graph object that was modified in place.

	Return type

	networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]

	
exception topologic.UnweightedGraphError(message)

	Bases: BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]

Subpackages

	topologic.embedding package
	Subpackages
	topologic.embedding.clustering package

	topologic.embedding.distance package

	topologic.embedding.metric package

	topologic.embedding.clustering package

	topologic.embedding.distance package

	topologic.embedding.metric package

	topologic.io package

	topologic.partition package

	topologic.projection package

	topologic.similarity package

	topologic.statistics package

topologic.embedding package

	
topologic.embedding.adjacency_embedding(graph: networkx.classes.graph.Graph, maximum_dimensions: int = 100, elbow_cut: Optional[int] = 1, weight_column: str = 'weight', svd_seed: Optional[int] = None, num_iterations: int = 5, power_iteration_normalizer: str = 'QR', num_oversamples: int = 10) → topologic.embedding.embedding_container.EmbeddingContainer

	Generates a spectral embedding based upon the adjacency matrix of the graph.

See also: https://csustan.csustan.edu/~tom/Clustering/GraphLaplacian-tutorial.pdf

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – graph_augmented_sparse_matrix networkx Graph object containing no more than one
connected component. Note that if the graph is a directed graph, the resulting dimensionality of the embedding
will be twice that of an undirected graph

	maximum_dimensions (int [https://docs.python.org/3/library/functions.html#int]) – Maximum dimensions of embeddings that will be returned - defaults to 100. Actual
dimensions of resulting embeddings should be significantly smaller, but will never be over this value.

	elbow_cut (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – scree plot elbow detection will detect (usually) many elbows. This value specifies
which elbow to use prior to filtering out extraneous dimensions. If None, then an embedding of size
maximum_dimensions will be returned.

	weight_column (str [https://docs.python.org/3/library/stdtypes.html#str]) – The weight column to use in the Graph.

	svd_seed (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – If not provided, uses a random number every time, making consistent results difficult
Set this to a random int if you want consistency between executions over the same graph.

	num_iterations (int [https://docs.python.org/3/library/functions.html#int]) – The number of iterations to be used in the svd solver.

	num_oversamples (int [https://docs.python.org/3/library/functions.html#int]) – Additional number of random vectors to sample the range of M so as
to ensure proper conditioning. The total number of random vectors
used to find the range of M is n_components + n_oversamples. Smaller
number can improve speed but can negatively impact the quality of
approximation of singular vectors and singular values.

	power_iteration_normalizer (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Whether the power iterations are normalized with step-by-step
QR factorization (the slowest but most accurate), ‘none’
(the fastest but numerically unstable when n_iter is large, e.g.
typically 5 or larger), or ‘LU’ factorization (numerically stable
but can lose slightly in accuracy). The ‘auto’ mode applies no
normalization if num_iterations <= 2 and switches to LU otherwise.

Options: ‘auto’ (default), ‘QR’, ‘LU’, ‘none’

	Returns

	EmbeddingContainer containing a matrix, which itself contains the embedding for each node. the tuple also
contains a vector containing the corresponding vertex labels for each row in the matrix. the matrix and vector
are positionally correlated.

	Return type

	EmbeddingContainer

	
class topologic.embedding.EmbeddingContainer(embedding, vertex_labels)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
embedding

	Alias for field number 0

	
to_dictionary()

	

	
vertex_labels

	Alias for field number 1

	
class topologic.embedding.EmbeddingMethod

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enum to represent which embedding method to use when generating an Omnibus embedding

	
ADJACENCY_SPECTRAL_EMBEDDING = 0

	

	
LAPLACIAN_SPECTRAL_EMBEDDING = 1

	

	
topologic.embedding.find_elbows(iterable_to_search: Union[list, numpy.array], num_elbows: int = 1, threshold: int = 0) → numpy.array

	An implementation of profile likelihood as outlined in Zhu and Ghodsi
References, Zhu, Mu and Ghodsi, Ali (2006), Automatic dimensionality selection from the scree plot via the
use of profile likelihood, Computational Statistics & Data Analysis, Volume 51 Issue 2, pp 918-930, November, 2006

	Examples

	>>> input_data = [2, 3, 4, 5, 6, 7, 8, 9]
>>> result: np.array = find_elbows(input_data, num_elbows=1, threshold=0)
>>> result.size
1

	Parameters

	
	iterable_to_search – An ordered or unordered list of values that will be used to find the elbows.

	num_elbows – The number of elbows to return

	threshold – Smallest value to consider. Nonzero thresholds will affect elbow selection.

	Returns

	A numpy array containing elbows

	
topologic.embedding.generate_omnibus_matrix(matrices: List[Union[numpy.ndarray, scipy.sparse.csr.csr_matrix]]) → numpy.ndarray

	Generate the omnibus matrix from a list of adjacency or laplacian matrices as described by ‘A central limit theorem
for an omnibus embedding of random dot product graphs.’

Given an iterable of matrices a, b, … n then the omnibus matrix is defined as:

[[a, .5 * (a + b), ..., .5 * (a + n)],
 [.5 * (b + a), b, ..., .5 * (b + n)],
 [..., ..., ..., ...],
 [.5 * (n + a), .5 * (n + b, ..., n]
]

The current iteration of this function operates in O(n) but a further optimization could take it to O(.5 * n)

	See also:

	The original paper - https://arxiv.org/abs/1705.09355

	Parameters

	matrices (List[Union[numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], scipy.sparse.csr_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix]]]) – The list of matrices to generate the Omnibus matrix

	Returns

	An Omnibus matrix

	
topologic.embedding.laplacian_embedding(graph: networkx.classes.graph.Graph, maximum_dimensions: int = 100, elbow_cut: Optional[int] = 1, weight_column: str = 'weight', svd_seed: Optional[int] = None, num_iterations: int = 5, power_iteration_normalizer: str = 'QR', num_oversamples: int = 10) → topologic.embedding.embedding_container.EmbeddingContainer

	Generates a spectral embedding based upon the Laplacian matrix of the graph.

See also: https://csustan.csustan.edu/~tom/Clustering/GraphLaplacian-tutorial.pdf

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – A networkx Graph object containing no more than one connected component. Note that if
the graph is a directed graph, the resulting dimensionality of the embedding will be twice that of an
undirected graph

	maximum_dimensions (int [https://docs.python.org/3/library/functions.html#int]) – Maximum dimensions of embeddings that will be returned - defaults to 100. Actual
dimensions of resulting embeddings should be significantly smaller, but will never be over this value.

	elbow_cut (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – scree plot elbow detection will detect (usually) many elbows. This value specifies
which elbow to use prior to filtering out extraneous dimensions. If None, then an embedding of size
maximum_dimensions will be returned.

	weight_column (str [https://docs.python.org/3/library/stdtypes.html#str]) – The weight column to use in the Graph.

	svd_seed (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – If not provided, uses a random number every time, making consistent results difficult
Set this to a random int if you want consistency between executions over the same graph.

	num_iterations (int [https://docs.python.org/3/library/functions.html#int]) – The number of iterations to be used in the svd solver.

	num_oversamples (int [https://docs.python.org/3/library/functions.html#int]) – Additional number of random vectors to sample the range of M so as
to ensure proper conditioning. The total number of random vectors
used to find the range of M is n_components + n_oversamples. Smaller
number can improve speed but can negatively impact the quality of
approximation of singular vectors and singular values.

	power_iteration_normalizer (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Whether the power iterations are normalized with step-by-step
QR factorization (the slowest but most accurate), ‘none’
(the fastest but numerically unstable when n_iter is large, e.g.
typically 5 or larger), or ‘LU’ factorization (numerically stable
but can lose slightly in accuracy). The ‘auto’ mode applies no
normalization if num_iterations <= 2 and switches to LU otherwise.

Options: ‘auto’ (default), ‘QR’, ‘LU’, ‘none’

	Returns

	EmbeddingContainer containing a matrix, which itself contains the embedding for each node. the tuple also
contains a vector containing the corresponding vertex labels for each row in the matrix. the matrix and vector
are positionally correlated.

	Return type

	EmbeddingContainer

	
topologic.embedding.node2vec_embedding(graph: networkx.classes.graph.Graph, num_walks: int = 10, walk_length: int = 80, return_hyperparameter: int = 1, inout_hyperparameter: int = 1, dimensions: int = 128, window_size: int = 10, workers: int = 8, iterations: int = 1, interpolate_walk_lengths_by_node_degree: bool = True) → topologic.embedding.embedding_container.EmbeddingContainer

	Generates a node2vec embedding from a given graph. Will follow the word2vec algorithm to create the embedding.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – A networkx graph. If the graph is unweighted, the weight of each edge will default to 1

	num_walks (int [https://docs.python.org/3/library/functions.html#int]) – Number of walks per source. Default is 10.

	walk_length (int [https://docs.python.org/3/library/functions.html#int]) – Length of walk per source. Default is 80.

	return_hyperparameter (int [https://docs.python.org/3/library/functions.html#int]) – Return hyperparameter (p). Default is 1.

	inout_hyperparameter (int [https://docs.python.org/3/library/functions.html#int]) – Inout hyperparameter (q). Default is 1.

	dimensions (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of the word vectors. Default is 128.

	window_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum distance between the current and predicted word within a sentence. Default is 10.

	workers (int [https://docs.python.org/3/library/functions.html#int]) – Use these many worker threads to train the model. Default is 8.

	iterations (int [https://docs.python.org/3/library/functions.html#int]) – Number of epochs in stochastic gradient descent (SGD)

	interpolate_walk_lengths_by_node_degree (bool [https://docs.python.org/3/library/functions.html#bool]) – Use a dynamic walk length that corresponds to each nodes
degree. If the node is in the bottom 20 percentile, default to a walk length of 1. If it is in the top 10
percentile, use walk_length. If it is in the 20-80 percentiles, linearly interpolate between 1 and walk_length.

This will reduce lower degree nodes from biasing your resulting embedding. If a low degree node has the same
number of walks as a high degree node (which it will if this setting is not on), then the lower degree nodes
will take a smaller breadth of random walks when compared to the high degree nodes. This will result in your
lower degree walks dominating your higher degree nodes.

	Returns

	tuple containing a matrix, which itself contains the embedding for each node. the tuple also contains
a vector containing the corresponding vertex labels for each row in the matrix. the matrix and vector are
positionally correlated.

	Return type

	EmbeddingContainer

	
topologic.embedding.omnibus_embedding(graphs: List[networkx.classes.graph.Graph], maximum_dimensions: int = 100, elbow_cut: Optional[int] = 1, embedding_method: topologic.embedding.embedding_methods.EmbeddingMethod = <EmbeddingMethod.LAPLACIAN_SPECTRAL_EMBEDDING: 1>, svd_seed: Optional[int] = None, num_iterations: int = 5, power_iteration_normalizer: str = 'QR', num_oversamples: int = 10) → List[Tuple[topologic.embedding.embedding_container.EmbeddingContainer, topologic.embedding.embedding_container.EmbeddingContainer]]

	Generates a pairwise omnibus embedding for each pair of graphs in a list of graphs. If given graphs A, B, and C,
the embeddings will be computed for A,B and B,C.

There should be exactly the same number of nodes in each graph with exactly the same labels. The list of graphs
should represent a time series and should be in an order such that time is continuous through the list of graphs.

If the labels differ between each pair of graphs, then those nodes will _not_ be found in the resulting embedding.

	Parameters

	
	graphs (List[networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]]) – A list of graphs that will be used to generate the omnibus embedding. Each graph
should have exactly the same vertices as each of the other graphs. The order of the graphs in the list matter.
The first graph will be at time 0 and each following graph will increment time by 1.

	maximum_dimensions (int [https://docs.python.org/3/library/functions.html#int]) – Maximum dimensions of embeddings that will be returned - defaults to 100. Actual
dimensions of resulting embeddings should be significantly smaller, but will never be over this value.

	elbow_cut (int [https://docs.python.org/3/library/functions.html#int]) – scree plot elbow detection will detect (usually) many elbows. This value specifies which
elbow to use prior to filtering out extraneous dimensions.

	embedding_method (topologic.embedding.EmbeddingMethod) – The embedding technique used to generate the Omnibus
embedding.

	svd_seed (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – If not provided, uses a random number every time, making consistent results difficult
Set this to a random int if you want consistency between executions over the same graph.

	num_iterations (int [https://docs.python.org/3/library/functions.html#int]) – The number of iterations to be used in the svd solver.

	num_oversamples (int [https://docs.python.org/3/library/functions.html#int]) – Additional number of random vectors to sample the range of M so as
to ensure proper conditioning. The total number of random vectors
used to find the range of M is n_components + n_oversamples. Smaller
number can improve speed but can negatively impact the quality of
approximation of singular vectors and singular values.

	power_iteration_normalizer (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Whether the power iterations are normalized with step-by-step
QR factorization (the slowest but most accurate), ‘none’
(the fastest but numerically unstable when n_iter is large, e.g.
typically 5 or larger), or ‘LU’ factorization (numerically stable
but can lose slightly in accuracy). The ‘auto’ mode applies no
normalization if num_iterations <= 2 and switches to LU otherwise.

Options: ‘auto’ (default), ‘QR’, ‘LU’, ‘none’

	Returns

	A List of EmbeddingContainers each containing a matrix, which itself contains the embedding for each node.
the tuple also contains a vector containing the corresponding vertex labels for each row in the matrix. the
matrix and vector are positionally correlated.

	Return type

	List[(EmbeddingContainer, EmbeddingContainer)]

	
class topologic.embedding.OutOfSampleEmbeddingContainer(embedding, vertex_labels, vertex_labels_failing_inference, starting_index_of_oos_embedding, u, sigma)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
embedding

	Alias for field number 0

	
sigma

	Alias for field number 5

	
starting_index_of_oos_embedding

	Alias for field number 3

	
to_dictionary()

	

	
u

	Alias for field number 4

	
vertex_labels

	Alias for field number 1

	
vertex_labels_failing_inference

	Alias for field number 2

	
topologic.embedding.pca(embedding: numpy.ndarray, num_components: Union[str, int], whiten: bool = False, svd_solver: str = 'auto', tolerance: float = 0.0, iterated_power: Union[int, str] = 'auto', random_state: Union[int, numpy.random.mtrand.RandomState, None] = None) → numpy.ndarray

	Principal component analysis (PCA)

Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional
space.

It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the method of Halko et al. 2009,
depending on the shape of the input data and the number of components to extract.

	Parameters

	
	embedding (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The embedding in which PCA will be applied

	num_components (Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) – If num_components == 'mle' and svd_solver == 'full', Minka’s
MLE is used to guess the dimension. Use of num_components == 'mle'
will interpret svd_solver == 'auto' as svd_solver == 'full'.

If 0 < num_components < 1 and svd_solver == 'full', select the
number of components such that the amount of variance that needs to be
explained is greater than the percentage specified by num_components.

If svd_solver == 'arpack', the number of components must be
strictly less than the minimum of number of features and the number of samples.

	whiten (bool [https://docs.python.org/3/library/functions.html#bool]) – When True (False by default) the components_ vectors are multiplied
by the square root of n_samples and then divided by the singular values
to ensure uncorrelated outputs with unit component-wise variances.

Whitening will remove some information from the transformed signal
(the relative variance scales of the components) but can sometime
improve the predictive accuracy of the downstream estimators by
making their data respect some hard-wired assumptions.

	svd_solver (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	auto :

	the solver is selected by a default policy based on X.shape and
num_components: if the input data is larger than 500x500 and the
number of components to extract is lower than 80% of the smallest
dimension of the data, then the more efficient ‘randomized’
method is enabled. Otherwise the exact full SVD is computed and
optionally truncated afterwards.

	full :

	run exact full SVD calling the standard LAPACK solver via
scipy.linalg.svd and select the components by postprocessing

	arpack :

	run SVD truncated to num_components calling ARPACK solver via
scipy.sparse.linalg.svds. It requires strictly
0 < num_components < min(X.shape)

	randomized :

	run randomized SVD by the method of Halko et al.

	tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for singular values computed by svd_solver == ‘arpack’. A float value >=0 with
default 0

	iterated_power (Union[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Number of iterations for the power method computed by
svd_solver == ‘randomized’.

	random_state (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random. Used when svd_solver == ‘arpack’ or ‘randomized’.

	Returns

	A np.ndarray of principal axes in feature space, representing the directions of
maximum variance in the data. The components are sorted by variance`

	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
topologic.embedding.sample_graph_by_edge_weight(graph, weight_column='weight', weight_cutoff=None, percentage=0.1, nodelist=None)

	

	
topologic.embedding.sample_graph_by_vertex_degree(graph, degree_cutoff=None, percentage=0.1, nodelist=None)

	

	
class topologic.embedding.SampleMethod

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

	
EDGE_WEIGHT = 1

	

	
VERTEX_DEGREE = 0

	

	
topologic.embedding.tsne(embedding: numpy.ndarray, num_components: int = 2, perplexity: float = 30.0, early_exaggeration: float = 12.0, learning_rate: float = 200.0, num_iterations: int = 1000, num_iterations_without_progress: int = 300, min_grad_norm: float = 1e-07, metric: str = 'euclidean', init: str = 'random', verbose: int = 1, random_state: Union[int, numpy.random.mtrand.RandomState, None] = None, method: str = 'barnes_hut', angle: float = 0.5) → numpy.ndarray

	t-distributed Stochastic Neighbor Embedding.

t-SNE is a tool to visualize high-dimensional data. It converts
similarities between data points to joint probabilities and tries
to minimize the Kullback-Leibler divergence between the joint
probabilities of the low-dimensional embedding and the
high-dimensional data. t-SNE has a cost function that is not convex,
i.e. with different initializations we can get different results.

It is highly recommended to use another dimensionality reduction
method (e.g. PCA for dense data or TruncatedSVD for sparse data)
to reduce the number of dimensions to a reasonable amount (e.g. 50)
if the number of features is very high. This will suppress some
noise and speed up the computation of pairwise distances between
samples.

	Parameters

	
	embedding (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The embedding in which PCA will be applied

	num_components (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of the embedded space. Default 2

	perplexity (float [https://docs.python.org/3/library/functions.html#float]) – The perplexity is related to the number of nearest neighbors that
is used in other manifold learning algorithms. Larger datasets
usually require a larger perplexity. Consider selecting a value
between 5 and 50. The choice is not extremely critical since t-SNE
is quite insensitive to this parameter. Default 30.0

	early_exaggeration (float [https://docs.python.org/3/library/functions.html#float]) – Controls how tight natural clusters in the original space are in
the embedded space and how much space will be between them. For
larger values, the space between natural clusters will be larger
in the embedded space. Again, the choice of this parameter is not
very critical. If the cost function increases during initial
optimization, the early exaggeration factor or the learning rate
might be too high. Default 12.0

	learning_rate (float [https://docs.python.org/3/library/functions.html#float]) – The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If
the learning rate is too high, the data may look like a ‘ball’ with any
point approximately equidistant from its nearest neighbours. If the
learning rate is too low, most points may look compressed in a dense
cloud with few outliers. If the cost function gets stuck in a bad local
minimum increasing the learning rate may help. Default 200.0

	num_iterations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations for the optimization. Should be at
least 250. Default 1000

	num_iterations_without_progress (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations without progress before we abort the
optimization, used after 250 initial iterations with early
exaggeration. Note that progress is only checked every 50 iterations so
this value is rounded to the next multiple of 50. Default 300

	min_grad_norm (float [https://docs.python.org/3/library/functions.html#float]) – If the gradient norm is below this threshold, the optimization will
be stopped. Default 1e-7

	metric (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable]) – The metric to use when calculating distance between instances in a
feature array. If metric is a string, it must be one of the options
allowed by scipy.spatial.distance.pdist for its metric parameter, or
a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS.
If metric is “precomputed”, X is assumed to be a distance matrix.
Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays from X as input and return a value indicating
the distance between them. The default is “euclidean” which is
interpreted as squared euclidean distance. Default ‘euclidean’

	init (Union[string, numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – Initialization of embedding. Possible options are ‘random’, ‘pca’,
and a numpy array of shape (n_samples, num_components).
PCA initialization cannot be used with precomputed distances and is
usually more globally stable than random initialization. Default ‘random’

	verbose (int [https://docs.python.org/3/library/functions.html#int]) – Verbosity level. Default 1

	random_state (Optional[Union[int [https://docs.python.org/3/library/functions.html#int], numpy.random.RandomState]]) – If int, random_state is the seed used by the random number
generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random. Note that different initializations might result in
different local minima of the cost function.

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – By default the gradient calculation algorithm uses Barnes-Hut
approximation running in O(NlogN) time. method=’exact’
will run on the slower, but exact, algorithm in O(N^2) time. The
exact algorithm should be used when nearest-neighbor errors need
to be better than 3%. However, the exact method cannot scale to
millions of examples. Default ‘barnes_hut’

	angle (float [https://docs.python.org/3/library/functions.html#float]) – Only used if method=’barnes_hut’
This is the trade-off between speed and accuracy for Barnpcaes-Hut T-SNE.
‘angle’ is the angular size (referred to as theta in [3]) of a distant
node as measured from a point. If this size is below ‘angle’ then it is
used as a summary node of all points contained within it.
This method is not very sensitive to changes in this parameter
in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing
computation time and angle greater 0.8 has quickly increasing error. Default 0.5

	Returns

	A np.ndarray of principal axes in feature space, representing the directions of
maximum variance in the data. The components are sorted by variance`

	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

Subpackages

	topologic.embedding.clustering package

	topologic.embedding.distance package

	topologic.embedding.metric package

topologic.embedding.clustering package

	
topologic.embedding.clustering.dbscan(embedding: numpy.ndarray, eps: float = 0.5, min_samples: int = 5, metric: str = 'minkowski', metric_params: dict = None, algorithm: str = 'auto', leaf_size: int = 30, p: float = 2, sample_weight: array.array = None, n_jobs: int = None) → numpy.ndarray

	Perform DBSCAN clustering from vector array or distance matrix.

	Parameters

	
	embedding (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An n x d array of vectors representing n labels in a d dimensional space

	eps (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The maximum distance between two samples for them to be considered as in the same
neighborhood.

	min_samples (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The number of samples (or total weight) in a neighborhood for a point to be
considered as a core point. This includes the point itself.

	metric (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable[[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], float [https://docs.python.org/3/library/functions.html#float]]]) – The metric to use when calculating distance between instances in a feature
array. If metric is a string or callable, it must be one of the options allowed by
sklearn.metrics.pairwise_distances() [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html#sklearn.metrics.pairwise_distances] for its metric parameter. If metric is “precomputed”, X is assumed
to be a distance matrix and must be square. X may be a sparse matrix, in which case only “nonzero” elements may
be considered neighbors for DBSCAN.

If metric is a callable function, it is called on each pair of instances (rows) and the resulting value
recorded. The callable should take two arrays from X as input and return a value indicating the distance
between them.

	metric_params (Optional[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Additional keyword arguments for the metric function.

	algorithm (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The algorithm to be used by the NearestNeighbors module
to compute pointwise distances and find nearest neighbors.
Potential values: {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

	leaf_size (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Leaf size passed to BallTree or cKDTree. This can affect the speed
of the construction and query, as well as the memory required
to store the tree. The optimal value depends
on the nature of the problem. Default 30

	p (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The power of the Minkowski metric to be used to calculate distance
between points. Default 2.0

	sample_weight (Optional[Array[int [https://docs.python.org/3/library/functions.html#int]]]) – Weight of each sample, such that a sample with a weight of at least
min_samples is by itself a core sample; a sample with negative
weight may inhibit its eps-neighbor from being core.
Note that weights are absolute, and default to 1.

	n_jobs (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The number of parallel jobs to run for neighbors search.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors.

	Returns

	The cluster labels for each vector in the given embedding. The vector at index n in the embedding will
have the label at index n in this returned array. Noisy samples are given the value -1

	Return type

	np.ndarray

	
topologic.embedding.clustering.gaussian_mixture_model(embedding: numpy.ndarray, num_clusters: int = 1, seed: int = None) → numpy.ndarray

	Performs gaussian mixture model clustering on the feature_matrix.

	Parameters

	
	embedding (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An n x d feature matrix; it is assumed that the d features are ordered

	num_clusters (int [https://docs.python.org/3/library/functions.html#int]) – How many clusters to look at between min_clusters and max_clusters, default 1

	seed (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The seed for numpy random, default None

	Returns

	The cluster labels for each vector in the given embedding. The vector at index n in the embedding will
have the label at index n in this returned array

	Return type

	np.ndarray

	
topologic.embedding.clustering.kmeans(embedding: numpy.ndarray, n_clusters: int = 1, init: Union[str, numpy.ndarray] = 'k-means++', n_init: int = 10, max_iter: int = 300, tolerance: float = 0.0001, precompute_distances='auto', verbose: int = 0, random_state: int = None, copy_x: bool = True, n_jobs: int = None, algorithm: str = 'auto') → numpy.ndarray

	Performs kmeans clustering on the embedding.

	Parameters

	
	embedding (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An n x d array of vectors representing n labels in a d dimensional space

	n_clusters (int [https://docs.python.org/3/library/functions.html#int]) – The number of clusters to form as well as the number of
centroids to generate. Default 1

	init (Union[str [https://docs.python.org/3/library/stdtypes.html#str], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – Method for initialization, defaults to ‘k-means++’:

’k-means++’ : selects initial cluster centers for k-mean
clustering in a smart way to speed up convergence.

’random’: choose k observations (rows) at random from data for
the initial centroids.

If an ndarray is passed, it should be of shape (n_clusters, n_features)
and gives the initial centers.

	n_init (int [https://docs.python.org/3/library/functions.html#int]) – Number of time the k-means algorithm will be run with different
centroid seeds. The final results will be the best output of
n_init consecutive runs in terms of inertia. Default 10

	max_iter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations of the k-means algorithm for a
single run. Default 300

	tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Relative tolerance with regards to inertia to declare convergence. Default 1e-4

	precompute_distances (Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Precompute distances (faster but takes more memory).

’auto’ : do not precompute distances if n_samples * n_clusters > 12
million. This corresponds to about 100MB overhead per job using
double precision.

True : always precompute distances

False : never precompute distances

	verbose (int [https://docs.python.org/3/library/functions.html#int]) – Verbosity mode. Default 0

	random_state (Optional[Union[int [https://docs.python.org/3/library/functions.html#int], numpy.random.RandomState]]) – Determines random number generation for centroid
initialization. Use an int to make the randomness deterministic.

	copy_x (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – When pre-computing distances it is more numerically accurate to center
the data first. If copy_x is True (default), then the original data is
not modified, ensuring X is C-contiguous. If False, the original data
is modified, and put back before the function returns, but small
numerical differences may be introduced by subtracting and then adding
the data mean, in this case it will also not ensure that data is
C-contiguous which may cause a significant slowdown.

	n_jobs (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The number of jobs to use for the computation. This works by computing
each of the n_init runs in parallel.

None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors.

	algorithm (str [https://docs.python.org/3/library/stdtypes.html#str]) – K-means algorithm to use. The classical EM-style algorithm is “full”.
The “elkan” variation is more efficient by using the triangle
inequality, but currently doesn’t support sparse data. “auto” chooses
“elkan” for dense data and “full” for sparse data.

	Returns

	The cluster labels for each vector in the given embedding. The vector at index n in the embedding will
have the label at index n in this returned array

	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
topologic.embedding.clustering.wards_clustering(embedding: numpy.ndarray, num_clusters: int = 2, affinity: str = 'euclidean', memory: str = None, connectivity: numpy.ndarray = None, compute_full_tree: str = 'auto') → numpy.ndarray

	Uses agglomerative clustering with ward linkage

Recursively merges the pair of clusters that minimally increases
a given linkage distance.

	Parameters

	
	embedding (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An n x d array of vectors representing n labels in a d dimensional space

	num_clusters (int [https://docs.python.org/3/library/functions.html#int]) – int, default=2
The number of clusters to find.

	affinity (str [https://docs.python.org/3/library/stdtypes.html#str]) – string or callable, default: “euclidean”
Metric used to compute the linkage. Can be “euclidean”, “l1”, “l2”,
“manhattan”, “cosine”, or ‘precomputed’.
If linkage is “ward”, only “euclidean” is accepted.

	memory (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], joblib.Memory]]) – None, str or object with the joblib.Memory interface, optional
Used to cache the output of the computation of the tree.
By default, no caching is done. If a string is given, it is the
path to the caching directory.

	connectivity (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – array-like or callable, optional
Connectivity matrix. Defines for each sample the neighboring
samples following a given structure of the data.
This can be a connectivity matrix itself or a callable that transforms
the data into a connectivity matrix, such as derived from
kneighbors_graph. Default is None, i.e, the
hierarchical clustering algorithm is unstructured.

	compute_full_tree (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – bool or ‘auto’ (optional)
Stop early the construction of the tree at n_clusters. This is
useful to decrease computation time if the number of clusters is
not small compared to the number of samples. This option is
useful only when specifying a connectivity matrix. Note also that
when varying the number of clusters and using caching, it may
be advantageous to compute the full tree.

	Returns

	The cluster labels for each vector in the given embedding. The vector at index n in the embedding will
have the label at index n in this returned array

	Return type

	np.ndarray

topologic.embedding.distance package

	
topologic.embedding.distance.cosine(first_vector: numpy.ndarray, second_vector: numpy.ndarray) → float

	Distance function for two vectors of equal length.

Cosine distance [https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.cosine.html]

See also: https://en.wikipedia.org/wiki/Cosine_similarity

	Parameters

	
	first_vector (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – nonzero vector. must be same length as second_vector

	second_vector (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – nonzero vector. must be same length as first_vector

	Returns

	cosine distance - Resulting range is between 0 and 2. Values closer to 0 are more similar. Values closer
to 2 are approaching total dissimilarity.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Examples

	>>> cosine(np.array([1,3,5]), np.array([2,3,4]))
0.026964528109766017

	
topologic.embedding.distance.euclidean(first_vector: numpy.ndarray, second_vector: numpy.ndarray) → float

	Distance function for two vectors of equal length

Euclidean distance [https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.euclidean.html]

See also: https://en.wikipedia.org/wiki/Euclidean_distance

	Parameters

	
	first_vector (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – nonzero vector. must be same length as second_vector

	second_vector (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – nonzero vector. must be same length as first_vector

	Returns

	euclidean distance - Resulting range is a positive real number. Values closer to 0 are more similar.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Examples

	>>> euclidean(np.array([1,3,5]), np.array([2,3,4]))
1.4142135623730951

	
topologic.embedding.distance.mahalanobis(inverse_covariance: numpy.ndarray) → Callable[[numpy.ndarray, numpy.ndarray], float]

	Unlike cosine and euclidean distances which scipy provides that take in only two vectors, mahalanobis also
requires an inverse covariance matrix. This function can be used but first this matrix must be provided and a
curried function handler returned, which can then be passed in to the vector_distance and
embedding_distances_from functions.

See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.mahalanobis.html

	Parameters

	inverse_covariance (np.ndarray) – The inverse covariance matrix

	Returns

	A curried function that now takes in 2 vectors and determines distance based on the inverse_covariance
provided.

	
topologic.embedding.distance.valid_distance_functions() → KeysView[str]

	The topologic builtin list of valid distance functions. Any function that return a float when given two
np.ndarray 1d vectors is a valid choice, but the only ones we support without any other work are cosine or
euclidean.

	Returns

	A set-like view of the string names of the functions we support

	
topologic.embedding.distance.vector_distance(first_vector: numpy.ndarray, second_vector: numpy.ndarray, method: Union[str, Callable[[numpy.ndarray, numpy.ndarray], float]] = <function cosine>) → float

	Vector distance is a function that will do any distance function you would like on two vectors. This is most
commonly used by changing the method parameter, as a string, from “cosine” to “euclidean” - allowing you to change
your flow based on configuration not on code changes to the actual cosine and euclidean functions.

	Parameters

	
	first_vector (np.ndarray) – A 1d array-like (list, tuple, np.array) that represents the first vector

	second_vector (np.ndarray) – A 1d array-like (list, tuple, np.array) that represents the second vector

	method (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable[[np.ndarray, np.ndarray], float [https://docs.python.org/3/library/functions.html#float]]]) – Method can be any distance function that takes in 2 parameters. It can also be the string mapping
to that function (as described by valid_distance_functions()). Note that you can also provide other functions,
such as mahalanobis, but they require more information than just the comparative vectors.

	Returns

	A float indicating the distance between two vectors.

	
topologic.embedding.distance.embedding_distances_from(vector: numpy.ndarray, embedding: Union[topologic.embedding.embedding_container.EmbeddingContainer, numpy.ndarray], method: Union[str, Callable[[numpy.ndarray, numpy.ndarray], float]] = <function cosine>) → numpy.ndarray

	This function will return a 1d np.ndarray of floats by doing a distance calculation from the given vector to each
vector stored in the embedding (likely including itself).

The distance calculation can be provided either as a function reference or a string representation mapped to
the 2 standard distance functions we natively support. The functions supported are cosine and euclidean, both of
which are scipy implementations. There is also a mahalanobis generator function that can be used, but first you
must provide it with the inverse covariance matrix necessary for the distance calculations to be performed.

	Parameters

	
	vector (np.ndarray) – A 1d array-like (list, tuple, np.array) that represents the vector to compare against
every other vector in the embedding

	np.ndarray] embedding (Union[EmbeddingContainer,) – The embedding is either a 2d np array, where each row is
a vector and the number of columns is identical to the length of the vector to compare against.

	method (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable[[np.ndarray, np.ndarray], float [https://docs.python.org/3/library/functions.html#float]]]) – Method can be any distance function that takes in 2 parameters. It can also be the string mapping
to that function (as described by valid_distance_functions()). Note that you can also provide other functions,
such as mahalanobis, but they require more information than just the comparative vectors.

	Returns

	np.ndarray of dtype float the same length as the count of embedded vectors

	Examples

	>>> vector = [0.3, 0.4, 0.5]
>>> embedding = np.array([[0.3, 0.4, 0.5], [0.31, 0.44, 0.7]])
>>> embedding_distances_from(vector, embedding, method="cosine") # using string version of method name
array([0. , 0.00861606])
>>> embedding_distances_from(vector, embedding, method=euclidean) # using function handle
array([0. , 0.20420578])

topologic.embedding.metric package

	
topologic.embedding.metric.calculate_internal_external_densities(graph: networkx.classes.graph.Graph, partitions: Dict[Any, Any], weight_attribute: str = 'weight') → Tuple[Dict[Any, List[float]], Dict[Any, List[float]]]

	Calculates the internal and external densities given a graph and a node membership dictionary. Density is defined
by ‘How to Make the Team: Social Networks vs. Demography as Criteria for Designing Effective Teams’ as being
the mean strength of tie between members of the set. In other words, density is the normalized average of edge
weights by node.

For a given node, the density is the sum of all edge weights divided by the maximum edge weight for that node.

For internal density, only the edge’s whose target node is in the same membership group will be summed. Similarly,
for external density, only the edge’s whose target node is not in the same membership group will be summed.

See also:
Reagans, R., Zuckerman, E., & McEvily, B. (2004).
How to Make the Team: Social Networks vs. Demography as Criteria for Designing Effective Teams.
Administrative Science Quarterly, 49(1), 101–133. https://doi.org/10.2307/4131457

	Parameters

	
	graph – A weighted graph that the internal density will be calculated over

	int] partitions (Dict[any,) – A dictionary for the graph with each key being a node id and each value is
the membership for that node id. Often this will be a partition dictionary calculated from
topologic.louvain.best_partition

	weight_attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to the weight column on the graph’s edges

	Returns

	A tuple of two dictionaries. The first is the internal density and the second is the external density

	Return type

	Tuple[Dict[Any, List[float [https://docs.python.org/3/library/functions.html#float]]], Dict[Any, List[float [https://docs.python.org/3/library/functions.html#float]]]]

	
topologic.embedding.metric.mean_average_precision(graph: networkx.classes.graph.Graph, embedding_container: topologic.embedding.embedding_container.EmbeddingContainer, distance_metric: str = 'euclidean') → float

	Mean Average Precision (mAP)

A fidelity measure to evaluate the quality of embedding generated with respect to the original unweighted Graph.

Higher mAP value corresponds to a better quality embedding.

	Parameters

	
	G (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The unweighted graph for which the embedding is generated

	embedding_container (EmbeddingContainer) – The embedding container generated for the graph for
which the mean average precision will be calculated

	distance_metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – The distance metric to be used to find shortest path between nodes
in the graph and embedding space. Default value for this param is ‘euclidean’, but all distance
metrics available to the scipy.spatial.distance.cdist function are valid.

	Returns

	The mean average precision (mAP <= 1) representing the quality of the embedding

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
topologic.embedding.metric.procrustes_error(target_matrix: numpy.ndarray, matrix_to_rotate: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray]

	Procrustes rotation rotates a matrix to maximum similarity with a target matrix minimizing sum of squared
differences. Procrustes rotation is typically used in comparison of ordination results. It is particularly useful
in comparing alternative solutions in multidimensional scaling.

For more information:
https://www.rdocumentation.org/packages/vegan/versions/2.4-2/topics/procrustes

	Parameters

	
	target_matrix (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A matrix representing an embedding

	matrix_to_rotate (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A matrix representing an embedding which will be rotated

	Returns

	The error which is the difference between the two matrices and the transformation matrix

topologic.embedding.clustering package

	
topologic.embedding.clustering.dbscan(embedding: numpy.ndarray, eps: float = 0.5, min_samples: int = 5, metric: str = 'minkowski', metric_params: dict = None, algorithm: str = 'auto', leaf_size: int = 30, p: float = 2, sample_weight: array.array = None, n_jobs: int = None) → numpy.ndarray

	Perform DBSCAN clustering from vector array or distance matrix.

	Parameters

	
	embedding (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An n x d array of vectors representing n labels in a d dimensional space

	eps (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The maximum distance between two samples for them to be considered as in the same
neighborhood.

	min_samples (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The number of samples (or total weight) in a neighborhood for a point to be
considered as a core point. This includes the point itself.

	metric (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable[[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], float [https://docs.python.org/3/library/functions.html#float]]]) – The metric to use when calculating distance between instances in a feature
array. If metric is a string or callable, it must be one of the options allowed by
sklearn.metrics.pairwise_distances() [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html#sklearn.metrics.pairwise_distances] for its metric parameter. If metric is “precomputed”, X is assumed
to be a distance matrix and must be square. X may be a sparse matrix, in which case only “nonzero” elements may
be considered neighbors for DBSCAN.

If metric is a callable function, it is called on each pair of instances (rows) and the resulting value
recorded. The callable should take two arrays from X as input and return a value indicating the distance
between them.

	metric_params (Optional[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Additional keyword arguments for the metric function.

	algorithm (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The algorithm to be used by the NearestNeighbors module
to compute pointwise distances and find nearest neighbors.
Potential values: {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

	leaf_size (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Leaf size passed to BallTree or cKDTree. This can affect the speed
of the construction and query, as well as the memory required
to store the tree. The optimal value depends
on the nature of the problem. Default 30

	p (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The power of the Minkowski metric to be used to calculate distance
between points. Default 2.0

	sample_weight (Optional[Array[int [https://docs.python.org/3/library/functions.html#int]]]) – Weight of each sample, such that a sample with a weight of at least
min_samples is by itself a core sample; a sample with negative
weight may inhibit its eps-neighbor from being core.
Note that weights are absolute, and default to 1.

	n_jobs (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The number of parallel jobs to run for neighbors search.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors.

	Returns

	The cluster labels for each vector in the given embedding. The vector at index n in the embedding will
have the label at index n in this returned array. Noisy samples are given the value -1

	Return type

	np.ndarray

	
topologic.embedding.clustering.gaussian_mixture_model(embedding: numpy.ndarray, num_clusters: int = 1, seed: int = None) → numpy.ndarray

	Performs gaussian mixture model clustering on the feature_matrix.

	Parameters

	
	embedding (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An n x d feature matrix; it is assumed that the d features are ordered

	num_clusters (int [https://docs.python.org/3/library/functions.html#int]) – How many clusters to look at between min_clusters and max_clusters, default 1

	seed (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The seed for numpy random, default None

	Returns

	The cluster labels for each vector in the given embedding. The vector at index n in the embedding will
have the label at index n in this returned array

	Return type

	np.ndarray

	
topologic.embedding.clustering.kmeans(embedding: numpy.ndarray, n_clusters: int = 1, init: Union[str, numpy.ndarray] = 'k-means++', n_init: int = 10, max_iter: int = 300, tolerance: float = 0.0001, precompute_distances='auto', verbose: int = 0, random_state: int = None, copy_x: bool = True, n_jobs: int = None, algorithm: str = 'auto') → numpy.ndarray

	Performs kmeans clustering on the embedding.

	Parameters

	
	embedding (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An n x d array of vectors representing n labels in a d dimensional space

	n_clusters (int [https://docs.python.org/3/library/functions.html#int]) – The number of clusters to form as well as the number of
centroids to generate. Default 1

	init (Union[str [https://docs.python.org/3/library/stdtypes.html#str], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – Method for initialization, defaults to ‘k-means++’:

’k-means++’ : selects initial cluster centers for k-mean
clustering in a smart way to speed up convergence.

’random’: choose k observations (rows) at random from data for
the initial centroids.

If an ndarray is passed, it should be of shape (n_clusters, n_features)
and gives the initial centers.

	n_init (int [https://docs.python.org/3/library/functions.html#int]) – Number of time the k-means algorithm will be run with different
centroid seeds. The final results will be the best output of
n_init consecutive runs in terms of inertia. Default 10

	max_iter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations of the k-means algorithm for a
single run. Default 300

	tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Relative tolerance with regards to inertia to declare convergence. Default 1e-4

	precompute_distances (Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Precompute distances (faster but takes more memory).

’auto’ : do not precompute distances if n_samples * n_clusters > 12
million. This corresponds to about 100MB overhead per job using
double precision.

True : always precompute distances

False : never precompute distances

	verbose (int [https://docs.python.org/3/library/functions.html#int]) – Verbosity mode. Default 0

	random_state (Optional[Union[int [https://docs.python.org/3/library/functions.html#int], numpy.random.RandomState]]) – Determines random number generation for centroid
initialization. Use an int to make the randomness deterministic.

	copy_x (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – When pre-computing distances it is more numerically accurate to center
the data first. If copy_x is True (default), then the original data is
not modified, ensuring X is C-contiguous. If False, the original data
is modified, and put back before the function returns, but small
numerical differences may be introduced by subtracting and then adding
the data mean, in this case it will also not ensure that data is
C-contiguous which may cause a significant slowdown.

	n_jobs (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The number of jobs to use for the computation. This works by computing
each of the n_init runs in parallel.

None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors.

	algorithm (str [https://docs.python.org/3/library/stdtypes.html#str]) – K-means algorithm to use. The classical EM-style algorithm is “full”.
The “elkan” variation is more efficient by using the triangle
inequality, but currently doesn’t support sparse data. “auto” chooses
“elkan” for dense data and “full” for sparse data.

	Returns

	The cluster labels for each vector in the given embedding. The vector at index n in the embedding will
have the label at index n in this returned array

	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
topologic.embedding.clustering.wards_clustering(embedding: numpy.ndarray, num_clusters: int = 2, affinity: str = 'euclidean', memory: str = None, connectivity: numpy.ndarray = None, compute_full_tree: str = 'auto') → numpy.ndarray

	Uses agglomerative clustering with ward linkage

Recursively merges the pair of clusters that minimally increases
a given linkage distance.

	Parameters

	
	embedding (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An n x d array of vectors representing n labels in a d dimensional space

	num_clusters (int [https://docs.python.org/3/library/functions.html#int]) – int, default=2
The number of clusters to find.

	affinity (str [https://docs.python.org/3/library/stdtypes.html#str]) – string or callable, default: “euclidean”
Metric used to compute the linkage. Can be “euclidean”, “l1”, “l2”,
“manhattan”, “cosine”, or ‘precomputed’.
If linkage is “ward”, only “euclidean” is accepted.

	memory (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], joblib.Memory]]) – None, str or object with the joblib.Memory interface, optional
Used to cache the output of the computation of the tree.
By default, no caching is done. If a string is given, it is the
path to the caching directory.

	connectivity (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – array-like or callable, optional
Connectivity matrix. Defines for each sample the neighboring
samples following a given structure of the data.
This can be a connectivity matrix itself or a callable that transforms
the data into a connectivity matrix, such as derived from
kneighbors_graph. Default is None, i.e, the
hierarchical clustering algorithm is unstructured.

	compute_full_tree (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – bool or ‘auto’ (optional)
Stop early the construction of the tree at n_clusters. This is
useful to decrease computation time if the number of clusters is
not small compared to the number of samples. This option is
useful only when specifying a connectivity matrix. Note also that
when varying the number of clusters and using caching, it may
be advantageous to compute the full tree.

	Returns

	The cluster labels for each vector in the given embedding. The vector at index n in the embedding will
have the label at index n in this returned array

	Return type

	np.ndarray

topologic.embedding.distance package

	
topologic.embedding.distance.cosine(first_vector: numpy.ndarray, second_vector: numpy.ndarray) → float

	Distance function for two vectors of equal length.

Cosine distance [https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.cosine.html]

See also: https://en.wikipedia.org/wiki/Cosine_similarity

	Parameters

	
	first_vector (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – nonzero vector. must be same length as second_vector

	second_vector (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – nonzero vector. must be same length as first_vector

	Returns

	cosine distance - Resulting range is between 0 and 2. Values closer to 0 are more similar. Values closer
to 2 are approaching total dissimilarity.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Examples

	>>> cosine(np.array([1,3,5]), np.array([2,3,4]))
0.026964528109766017

	
topologic.embedding.distance.euclidean(first_vector: numpy.ndarray, second_vector: numpy.ndarray) → float

	Distance function for two vectors of equal length

Euclidean distance [https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.euclidean.html]

See also: https://en.wikipedia.org/wiki/Euclidean_distance

	Parameters

	
	first_vector (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – nonzero vector. must be same length as second_vector

	second_vector (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – nonzero vector. must be same length as first_vector

	Returns

	euclidean distance - Resulting range is a positive real number. Values closer to 0 are more similar.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Examples

	>>> euclidean(np.array([1,3,5]), np.array([2,3,4]))
1.4142135623730951

	
topologic.embedding.distance.mahalanobis(inverse_covariance: numpy.ndarray) → Callable[[numpy.ndarray, numpy.ndarray], float]

	Unlike cosine and euclidean distances which scipy provides that take in only two vectors, mahalanobis also
requires an inverse covariance matrix. This function can be used but first this matrix must be provided and a
curried function handler returned, which can then be passed in to the vector_distance and
embedding_distances_from functions.

See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.mahalanobis.html

	Parameters

	inverse_covariance (np.ndarray) – The inverse covariance matrix

	Returns

	A curried function that now takes in 2 vectors and determines distance based on the inverse_covariance
provided.

	
topologic.embedding.distance.valid_distance_functions() → KeysView[str]

	The topologic builtin list of valid distance functions. Any function that return a float when given two
np.ndarray 1d vectors is a valid choice, but the only ones we support without any other work are cosine or
euclidean.

	Returns

	A set-like view of the string names of the functions we support

	
topologic.embedding.distance.vector_distance(first_vector: numpy.ndarray, second_vector: numpy.ndarray, method: Union[str, Callable[[numpy.ndarray, numpy.ndarray], float]] = <function cosine>) → float

	Vector distance is a function that will do any distance function you would like on two vectors. This is most
commonly used by changing the method parameter, as a string, from “cosine” to “euclidean” - allowing you to change
your flow based on configuration not on code changes to the actual cosine and euclidean functions.

	Parameters

	
	first_vector (np.ndarray) – A 1d array-like (list, tuple, np.array) that represents the first vector

	second_vector (np.ndarray) – A 1d array-like (list, tuple, np.array) that represents the second vector

	method (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable[[np.ndarray, np.ndarray], float [https://docs.python.org/3/library/functions.html#float]]]) – Method can be any distance function that takes in 2 parameters. It can also be the string mapping
to that function (as described by valid_distance_functions()). Note that you can also provide other functions,
such as mahalanobis, but they require more information than just the comparative vectors.

	Returns

	A float indicating the distance between two vectors.

	
topologic.embedding.distance.embedding_distances_from(vector: numpy.ndarray, embedding: Union[topologic.embedding.embedding_container.EmbeddingContainer, numpy.ndarray], method: Union[str, Callable[[numpy.ndarray, numpy.ndarray], float]] = <function cosine>) → numpy.ndarray

	This function will return a 1d np.ndarray of floats by doing a distance calculation from the given vector to each
vector stored in the embedding (likely including itself).

The distance calculation can be provided either as a function reference or a string representation mapped to
the 2 standard distance functions we natively support. The functions supported are cosine and euclidean, both of
which are scipy implementations. There is also a mahalanobis generator function that can be used, but first you
must provide it with the inverse covariance matrix necessary for the distance calculations to be performed.

	Parameters

	
	vector (np.ndarray) – A 1d array-like (list, tuple, np.array) that represents the vector to compare against
every other vector in the embedding

	np.ndarray] embedding (Union[EmbeddingContainer,) – The embedding is either a 2d np array, where each row is
a vector and the number of columns is identical to the length of the vector to compare against.

	method (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable[[np.ndarray, np.ndarray], float [https://docs.python.org/3/library/functions.html#float]]]) – Method can be any distance function that takes in 2 parameters. It can also be the string mapping
to that function (as described by valid_distance_functions()). Note that you can also provide other functions,
such as mahalanobis, but they require more information than just the comparative vectors.

	Returns

	np.ndarray of dtype float the same length as the count of embedded vectors

	Examples

	>>> vector = [0.3, 0.4, 0.5]
>>> embedding = np.array([[0.3, 0.4, 0.5], [0.31, 0.44, 0.7]])
>>> embedding_distances_from(vector, embedding, method="cosine") # using string version of method name
array([0. , 0.00861606])
>>> embedding_distances_from(vector, embedding, method=euclidean) # using function handle
array([0. , 0.20420578])

topologic.embedding.metric package

	
topologic.embedding.metric.calculate_internal_external_densities(graph: networkx.classes.graph.Graph, partitions: Dict[Any, Any], weight_attribute: str = 'weight') → Tuple[Dict[Any, List[float]], Dict[Any, List[float]]]

	Calculates the internal and external densities given a graph and a node membership dictionary. Density is defined
by ‘How to Make the Team: Social Networks vs. Demography as Criteria for Designing Effective Teams’ as being
the mean strength of tie between members of the set. In other words, density is the normalized average of edge
weights by node.

For a given node, the density is the sum of all edge weights divided by the maximum edge weight for that node.

For internal density, only the edge’s whose target node is in the same membership group will be summed. Similarly,
for external density, only the edge’s whose target node is not in the same membership group will be summed.

See also:
Reagans, R., Zuckerman, E., & McEvily, B. (2004).
How to Make the Team: Social Networks vs. Demography as Criteria for Designing Effective Teams.
Administrative Science Quarterly, 49(1), 101–133. https://doi.org/10.2307/4131457

	Parameters

	
	graph – A weighted graph that the internal density will be calculated over

	int] partitions (Dict[any,) – A dictionary for the graph with each key being a node id and each value is
the membership for that node id. Often this will be a partition dictionary calculated from
topologic.louvain.best_partition

	weight_attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to the weight column on the graph’s edges

	Returns

	A tuple of two dictionaries. The first is the internal density and the second is the external density

	Return type

	Tuple[Dict[Any, List[float [https://docs.python.org/3/library/functions.html#float]]], Dict[Any, List[float [https://docs.python.org/3/library/functions.html#float]]]]

	
topologic.embedding.metric.mean_average_precision(graph: networkx.classes.graph.Graph, embedding_container: topologic.embedding.embedding_container.EmbeddingContainer, distance_metric: str = 'euclidean') → float

	Mean Average Precision (mAP)

A fidelity measure to evaluate the quality of embedding generated with respect to the original unweighted Graph.

Higher mAP value corresponds to a better quality embedding.

	Parameters

	
	G (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The unweighted graph for which the embedding is generated

	embedding_container (EmbeddingContainer) – The embedding container generated for the graph for
which the mean average precision will be calculated

	distance_metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – The distance metric to be used to find shortest path between nodes
in the graph and embedding space. Default value for this param is ‘euclidean’, but all distance
metrics available to the scipy.spatial.distance.cdist function are valid.

	Returns

	The mean average precision (mAP <= 1) representing the quality of the embedding

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
topologic.embedding.metric.procrustes_error(target_matrix: numpy.ndarray, matrix_to_rotate: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray]

	Procrustes rotation rotates a matrix to maximum similarity with a target matrix minimizing sum of squared
differences. Procrustes rotation is typically used in comparison of ordination results. It is particularly useful
in comparing alternative solutions in multidimensional scaling.

For more information:
https://www.rdocumentation.org/packages/vegan/versions/2.4-2/topics/procrustes

	Parameters

	
	target_matrix (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A matrix representing an embedding

	matrix_to_rotate (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A matrix representing an embedding which will be rotated

	Returns

	The error which is the difference between the two matrices and the transformation matrix

topologic.io package

	
topologic.io.consolidate_bipartite(csv_dataset: topologic.io.datasets.CsvDataset, vertex_column_index: int, pivot_column_index: int) → networkx.classes.graph.Graph

	

	
class topologic.io.CsvDataset(source_iterator: Union[TextIO, Iterator[str]], has_headers: Optional[bool] = None, dialect: Union[str, csv.Dialect, None] = None, use_headers: Optional[List[str]] = None, sample_size: int = 50)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
FIELD_SIZE_LIMIT = 2147483647

	

	
dialect() → Union[_csv.Dialect, csv.Dialect]

	Note: return type information is broken due to typeshed issues with the csv module.

	Returns

	Dialect used within this CsvDataset for the csv.reader.

	Return type

	Union[_csv.Dialect, csv.Dialect [https://docs.python.org/3/library/csv.html#csv.Dialect]]

	
headers() → List[str]

	
	Returns

	Returns a copy of the headers.

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
reader() → Iterator[List[str]]

	
	Returns

	Returns a properly configured csv reader for a given dialect

	Return type

	Iterator[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
topologic.io.find_edges(csv_dataset: topologic.io.datasets.CsvDataset, common_values_count: int = 20, rare_values_count: int = 20)

	

	
topologic.io.from_dataset(csv_dataset: topologic.io.datasets.CsvDataset, projection_function_generator: Callable[[networkx.classes.graph.Graph], Callable[[List[str]], None]], graph: Optional[networkx.classes.graph.Graph] = None) → networkx.classes.graph.Graph

	Load a graph from a source csv

The most important part of this function is selecting the appropriate projection function generators.
These functions generate yet another function generator, which in turn generates the function we will use to
project the source CsvDataset into our graph.

The provided projection function generators fall into 3 groups:

	edges we don’t want any metadata for (note that there is no vertex version of this - if you don’t want
vertex metadata, don’t provide a vertex_csv_dataset or function!)

	edges or vertices we want metadata for, but the file is ordered sequentially and we only want the last
metadata to be available in the graph

	edges or vertices we want metadata for, and we wish to keep track of every record of metadata for the
edge or vertex in a list of metadata dictionaries

You can certainly provide your own projection function generators for specialized needs; just ensure they follow
the type signature of Callable[[nx.Graph], Callable[[List[str]], None]]

	Parameters

	
	csv_dataset (CsvDataset) – the dataset to read from row by row

	projection_function_generator (Callable[[nx.Graph], Callable[[List[str [https://docs.python.org/3/library/stdtypes.html#str]]], None [https://docs.python.org/3/library/constants.html#None]]]) – The
projection function generator function. When called with a nx.Graph, it will return the
actual projection function to be used when processing each row of data.

	graph (nx.Graph) – The graph to populate. If not provided a new one is created of type nx.Graph. Note
that from_dataset can be called repeatedly with different edge or vertex csv_dataset files to populate the graph
more and more. If you seek to take this approach, ensure you use the same Graph object
from the previous calls so that it is continuously populated with the updated data from new files

	Returns

	the graph object

	Return type

	nx.Graph

	
topologic.io.from_file(edge_csv_file: TextIO, source_column_index: int, target_column_index: int, weight_column_index: Optional[int] = None, edge_csv_has_headers: Optional[bool] = None, edge_dialect: Union[str, csv.Dialect, None] = None, edge_csv_use_headers: Optional[List[str]] = None, edge_metadata_behavior: str = 'none', edge_ignored_values: Optional[List[str]] = None, vertex_csv_file: Optional[TextIO] = None, vertex_column_index: Optional[int] = None, vertex_csv_has_headers: Optional[bool] = None, vertex_dialect: Union[str, csv.Dialect, None] = None, vertex_csv_use_headers: Optional[List[str]] = None, vertex_metadata_behavior: str = 'single', vertex_ignored_values: Optional[List[str]] = None, sample_size: int = 50, is_digraph: bool = False) → networkx.classes.graph.Graph

	This function weaves a lot of graph materialization code into a single call.

The only required arguments are necessary for the bare minimum of creating a graph from an edge list. However,
it is definitely recommended to specify whether the any data files use headers and a dialect; in this way
we can avoid relying on the csv module’s sniffing ability to detect it for us. We only use a modest number of
records to discern the likelihood of headers existing or what to use for column separation (tabs or commas? quotes
or double quotes? Better to specify your own dialect than hope for the best, but the capability exists if you want
to throw caution to the wind.

The entire vertex metadata portion is optional; if no vertex_csv_file is specified (or it is set to None),
no attempt will be made to enrich the graph node metadata. The resulting vertex_metadata_types dictionary in the
NamedTuple will be an empty dictionary and can be discarded.

Likewise if no metadata is requested for projection by the edge projection function, the edge_metadata_types
dictionary in the NamedTuple will be an emtpy dictionary and can be discarded.

Lastly, it is important to note that the options for edge_metadata_behavior can only be the 3 string values
specified in the documentation - see the docs for that parameter for details. This is also true for the
vertex_metadata_behavior - see the docs for that parameter as well.

	Parameters

	
	edge_csv_file (typing.TextIO [https://docs.python.org/3/library/typing.html#typing.TextIO]) – A csv file that represents the edges of a graph. This file must contain at
minimum two columns: a source column and a target column. It is suggested there also exist a weight column with
some form of numeric value (e.g. 30 or 30.0)

	source_column_index (int [https://docs.python.org/3/library/functions.html#int]) – The column index the source vertex will be in. Columns start at 0.

	target_column_index (int [https://docs.python.org/3/library/functions.html#int]) – The column index the target vertex will be in. Columns start at 0.

	weight_column_index (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The column index the weight vertex will be in. Columns start at 0. If no
weight_column_index is provided, we use a count of the number of VertexA to VertexB edges that exist and use
that as the weight.

	edge_csv_has_headers (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Does the source CSV file contain headers? If so, we will skip the
first line. If edge_csv_use_headers is a List[str], we will use those as headers for mapping any metadata.
If it is None, we will use the header row as the headers, i.e. edge_csv_use_headers will take precedence
over any headers in the source file, if applicable.

	edge_dialect (Optional[Union[csv.Dialect [https://docs.python.org/3/library/csv.html#csv.Dialect], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The dialect to use when parsing the source CSV file. See
https://docs.python.org/3/library/csv.html#csv.Dialect for more details. If the value is None, we attempt
to use the csv module’s Sniffer class to detect which dialect to use based on a sample of the first 50 lines
of the source csv file. String values can be used if you provide the strings “excel”, “excel-tab”, or “unix”

	edge_csv_use_headers (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional. Headers to use for the edge file either because the
source file does not contain them or because you wish to override them with your own in a programmatic fashion.

	edge_metadata_behavior (str [https://docs.python.org/3/library/stdtypes.html#str]) – Dictates what extra data, aside from source, target, and weight, that we use from
the provided edge list.

	”none” brings along no metadata.

	”single” iterates through the file from top to bottom; any edges between VertexA and VertexB that had
metadata retained during edge projection will be overwritten with the newest row corresponding with
VertexA and VertexB. See also: Clobbering

	”collection” iterates through the file from top to bottom; all new metadata detected between VertexA and
VertexB is appended to the end of a list. All metadata is kept for all edges unless pruned via normal
graph pruning mechanisms.

	edge_ignored_values (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Optional. A list of strings to reject retention of during projection, e.g.
“NULL” or “N/A” or “NONE”. Any attribute value found to be one of these words will be ignored.

	vertex_csv_file (Optional[typing.TextIO [https://docs.python.org/3/library/typing.html#typing.TextIO]]) – A csv file that represents the vertices of a graph. This file
should contain a column whose values correspond with the vertex ID in either the source or column field in the
edges. If no edge exists for a Vertex, no metadata is retained.

Note: If vertex_csv_file is None or not provided, <u>none</u> of the vertex_* arguments will be used.

	vertex_column_index (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The column index the vertex id will be in. Columns start at 0. See note
on vertex_csv_file.

	vertex_csv_has_headers (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Does the source CSV file contain headers? If so, we will skip the
first line. If vertex_csv_use_headers is a List[str], we will use those as headers for mapping any metadata.
If it is None, we will use the header row as the headers, i.e. vertex_csv_use_headers will take precedence
over any header in the source file, if applicable.

	str]] vertex_dialect (Optional[Union[csv.Dialect [https://docs.python.org/3/library/csv.html#csv.Dialect],) – The dialect to use when parsing the source CSV file. See
https://docs.python.org/3/library/csv.html#csv.Dialect for more details. If the value is None, we attempt
to use the csv module’s Sniffer class to detect which dialect to use based on a sample of the first 50 lines
of the source csv file. String values can be used if you provide the strings “excel”, “excel-tab”, or “unix”

	vertex_csv_use_headers (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional. Headers to use for the vertex file either because the
source file does not contain them or because you wish to override them with your own in a programmatic fashion.
See note on vertex_csv_file.

	vertex_metadata_behavior (str [https://docs.python.org/3/library/stdtypes.html#str]) – Dictates what we do with vertex metadata. Unlike edge metadata, there is no
need to provide a vertex_metadata_behavior if you have no vertex metadata you wish to capture. No metadata will
be stored for any vertex if it is not detected in the graph already; if there are no edges to or from VertexA,
there will be no metadata retained for VertexA.

	”simple” iterates through the file from top to bottom; any vertex that had already captured metadata through
the vertex metadata projection process will be overwritten with the newest metadata corresponding with that
vertex.

	”collection” iterates through the file from top to bottom; all new metadata detected for a given vertex will

	vertex_ignored_values (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Optional. A list of strings to reject retention of during projection, e.g.
“NULL” be appended to a metadata list.
or “N/A” or “NONE”. Any attribute value found to be one of these words will be ignored.

	sample_size (int [https://docs.python.org/3/library/functions.html#int]) – The sample size to extract from the source CSV for use in Sniffing dialect or has_headers.
Please note that this sample_size does NOT advance your underlying iterator, nor is there any guarantee that
the csv Sniffer class will use every row extracted via sample_size. Setting this above 50 may not have the
impact you hope for due to the csv.Sniffer.has_header function - it will use at most 20 rows.

	is_digraph (bool [https://docs.python.org/3/library/functions.html#bool]) – If the data represents an undirected graph or a directed graph. Default is False.

	Returns

	The graph populated graph

	Return type

	nx.Graph

	
class topologic.io.GraphProperties(column_names, potential_edge_column_pairs, common_column_values, rare_column_values)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
column_names()

	

	
common_column_values()

	Dictionary of column name to set of common values for that column and their counts

	
potential_edge_column_pairs()

	

	
rare_column_values()

	Dictionary of column name to set of rare values for that column and their counts

	
topologic.io.load(edge_file: str, separator: str = 'excel', has_header: bool = True, source_index: int = 0, target_index: int = 1, weight_index: Optional[int] = None) → networkx.classes.graph.Graph

	Spartan, on-rails function to load an edge file.

	Parameters

	
	edge_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – String path to an edge file on the filesystem

	separator (str [https://docs.python.org/3/library/stdtypes.html#str]) – Valid values are ‘excel’ or ‘excel-tab’.

	has_header (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the edge file has a header line, False if not

	source_index (int [https://docs.python.org/3/library/functions.html#int]) – The column index for the source vertex (default 0)

	target_index (int [https://docs.python.org/3/library/functions.html#int]) – The column index for the target vertex (default 1)

	weight_index (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The column index for the edge weight (default None). If
None, or if there is no column at weight_index, weights per edge are defaulted to 1.

	Returns

	

	
class topologic.io.PotentialEdgeColumnPair(source, destination, score)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
destination()

	

	
score()

	

	
source()

	

	
topologic.io.tensor_projection_reader(embedding_file_path: str, label_file_path: str) → Tuple[numpy.ndarray, List[List[str]]]

	Reads the embedding and labels stored at the given paths and returns an np.ndarray and list of labels

	Parameters

	
	embedding_file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the embedding file

	label_file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the labels file

	Returns

	An embedding and list of labels

	Return type

	(numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], List[List[str [https://docs.python.org/3/library/stdtypes.html#str]]])

	
topologic.io.tensor_projection_writer(embedding_file_path: str, label_file_path: str, vectors: numpy.ndarray, labels: Union[List[List[str]], List[str]], encoding: str = 'utf-8')

	Writes an embedding and labels to a given vector file path and label file path in a form that Tensorboard embedding
projector can read

	Parameters

	
	embedding_file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path that the embedding file will be written

	label_file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path that the label file will be written

	vectors (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A embedding represented as a np.ndarray

	labels (Union[List[List[str [https://docs.python.org/3/library/stdtypes.html#str]]], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of lists where each inner list is the data for a single row
in the embedding or a list of strings where each string is the single label for that tensor. If you pass in a
List[List[str]] you allow multiple labels for a single tensor.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – The encoding used to write the file

topologic.partition package

	
topologic.partition.induce_graph_by_communities(graph: networkx.classes.graph.Graph, communities: Dict[Any, int], weight_attribute: str = 'weight') → networkx.classes.graph.Graph

	Creates a community graph with nodes from the communities dictionary
and using the edges of the original graph to form edges between communities.

Weights are aggregated; you may need to normalize the resulting graph
after calling this function.

Note: logs a warning if the size of the community dictionary is less than
the size of the provided graph’s vertexset.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The original graph that contains the edges that will be
used to formulate a new induced community graph

	communities (dict [https://docs.python.org/3/library/stdtypes.html#dict][Any, int [https://docs.python.org/3/library/functions.html#int]]) – The communities dictionary provides a mapping of
original vertex ID to new community ID.

	weight_attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – The weight attribute on the original graph’s edges to use
when aggregating the weights of the induced community graph. Default is weight.

	Returns

	The induced community graph.

	Return type

	networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the graph is None

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the communities dictionary is None

	
topologic.partition.louvain(graph: networkx.classes.graph.Graph, partition: Optional[Dict[Any, int]] = None, weight_attribute: str = 'weight', resolution: float = 1.0, random_state: Any = None) → Dict[Any, int]

	Compute the partition of the graph nodes which maximises the modularity (or try..) using the Louvain heuristics

This is the partition of highest modularity, i.e. the highest partition of the dendrogram generated by the Louvain
algorithm.

This louvain function is a limited wrapper to the
community.best_partition [https://python-louvain.readthedocs.io/en/latest/api.html#community.best_partition]
function in the python-louvain [https://github.com/taynaud/python-louvain] library written
by Thomas Aynaud [https://github.com/taynaud].

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – the networkx graph which is decomposed

	partition (Optional[Dict[Any, int [https://docs.python.org/3/library/functions.html#int]]]) – the algorithm will start using this partition of the nodes. It’s a
dictionary where keys are their nodes and values the communities

	weight_attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – the key in graph to use as weight. Default to ‘weight’

	resolution (float [https://docs.python.org/3/library/functions.html#float]) – Will change the size of the communities, default to 1. represents the time described in
“Laplacian Dynamics and Multiscale Modular Structure in Networks”, R. Lambiotte, J.-C. Delvenne, M. Barahona

	random_state (Any) – If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	Returns

	The partition, with communities numbered from 0 to number of communities

	Return type

	Dict[Any, int [https://docs.python.org/3/library/functions.html#int]]

	Raises

	NetworkXError - If the graph is not Eulerian.

References
1. Blondel, V.D. et al. Fast unfolding of communities in large networks. J. Stat. Mech 10008, 1-12(2008).

	
topologic.partition.q_score(partitioned_graph: topologic.partitioned_graph.PartitionedGraph, weight_column: str = 'weight') → float

	Given a topologic PartitionedGraph, return the q score - or modularity of a graph.

See also: https://en.wikipedia.org/wiki/Modularity_(networks)

	Parameters

	
	graph – Partitioned graph contains a dictionary of all the communities in a graph, optimized for
best modularity. This partition structure is used when computing final q_score / modularity of graph.

	weight_column (str [https://docs.python.org/3/library/stdtypes.html#str]) – weight column to use in computing modularity.

	Raises

	
	UnweightedGraphError – if graph does not contain weight_column in edge attributes

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the partition is not a partition of all graph nodes. This should not occur if PartitionedGraph
is recently created and no changes occurred to the underlying networkx.Graph object.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the graph has no links.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If partitioned_graph is not of type topologic.PartitionedGraph

	Returns

	q_score, or modularity, of this graph using the provided partitioning scheme.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

topologic.projection package

topologic.projections provides a canned series of source-to-Graph projection functions.

The function return type Callable[[nx.Graph], Callable[[List[str]], None]] is the cornerstone
to every projection function.

You can, and should, define any function you want as long as it complies with that return type. The first function
should take in any Dataset source-specific configuration information; information necessary to tell a projection
function how your source data is laid out and should be used to apply changes to the networkx.Graph.

The 1st inner function is used by the topologic.io.csv_loader.from_dataset function - it applies the networkx.Graph
to update.

The 2nd inner function is also used by topologic.io.csv_loader.from_dataset to take each record from the Dataset
source and use it to apply this modification to the networkx.Graph.

Graph metadata format:

If a graph is to have metadata on its vertices or edges, it shall always be in the form of:

{
 "weight": 1.0,
 "attributes": [
 { "key": "value1", "anotherKey": "anotherValue", "aDifferentKey": "aDifferentValue" },
 { "key": "value2", "aDifferentKey": "aDifferentValue2" }
]
}

Notes:
- Keys are always of type str
- Values are always stored as type str, but could be a more narrowly bounded type like int or float.
- Just because a key exists in one row of the attributes List does not mean it will exist in any other. Do not
presume a constant “shape” of the dictionaries of edge attributes.

	
topologic.projection.edge_ignore_metadata(source_index: int, target_index: int, weight_index: Optional[int] = None) → Callable[[networkx.classes.graph.Graph], Callable[[List[str]], None]]

	Drops all metadata. Creates graph solely based on source, target, and optional weight.

See package docstrings for more details on these currying functions.

	Parameters

	
	source_index (int [https://docs.python.org/3/library/functions.html#int]) – The index in the CSV data row to use as the source node in this edge

	target_index (int [https://docs.python.org/3/library/functions.html#int]) – The index in the CSV data row to use as the target node in this edge

	weight_index (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Optional. The index in the CSV data row to use as the weight of the edge.
If no weight is provided, all records of an edge are presumed to have a weight of 1. Duplicates of an edge
will have their weights (or inferred weight) aggregated into a single value.

	Returns

	A partially applied function that partially applies yet more arguments prior to the final operation
function

	Return type

	Callable[[networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]], Callable[[List[str [https://docs.python.org/3/library/stdtypes.html#str]]], None [https://docs.python.org/3/library/constants.html#None]]]

	
topologic.projection.edge_with_collection_metadata(headers: List[str], source_index: int, target_index: int, weight_index: Optional[int] = None, ignored_values: Optional[List[str]] = None) → Callable[[networkx.classes.graph.Graph], Callable[[List[str]], None]]

	Some graph algorithms have undefined behavior over multigraphs. To skirt this limitation, we allow the data to
represent a multigraph, though we collapse it into a non-multigraph. We do this by aggregating the weights,
and in this case we take any extra metadata in the edge source and project it, along with headers, into an
attribute dictionary. This dictionary is then added to a List of any previous attribute dictionaries for the same
source and target, so as to not clobber any metadata.

See package docstrings for more details on these currying functions.

	Parameters

	
	headers (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Headers from a CSV row to use as metadata attribute keys

	source_index (int [https://docs.python.org/3/library/functions.html#int]) – The index in the CSV data row to use as the source node in this edge

	target_index (int [https://docs.python.org/3/library/functions.html#int]) – The index in the CSV data row to use as the target node in this edge

	weight_index (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Optional. The index in the CSV data row to use as the weight of the edge.
If no weight is provided, all records of an edge are presumed to have a weight of 1. Duplicates of an edge
will have their weights (or inferred weight) aggregated into a single value.

	ignored_values (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional. A list of values to ignore if present in the row, such as
“NULL” or “”

	Returns

	A partially applied function that partially applies yet more arguments prior to the final operation
function

	Return type

	Callable[[networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]], Callable[[List[str [https://docs.python.org/3/library/stdtypes.html#str]]], None [https://docs.python.org/3/library/constants.html#None]]]

	
topologic.projection.edge_with_single_metadata(headers: List[str], source_index: int, target_index: int, weight_index: Optional[int] = None, ignored_values: Optional[List[str]] = None) → Callable[[networkx.classes.graph.Graph], Callable[[List[str]], None]]

	Will load edges into graph even if they are a multigraph. However, aside from weight, the multigraph attributes are
ignored and the last record to be processed for that source and target will have its metadata retained and all prior
metadata dropped.

See package docstrings for more details on these currying functions.

	Parameters

	
	headers (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Headers from a CSV row to use as metadata attribute keys

	source_index (int [https://docs.python.org/3/library/functions.html#int]) – The index in the CSV data row to use as the source node in this edge

	target_index (int [https://docs.python.org/3/library/functions.html#int]) – The index in the CSV data row to use as the target node in this edge

	weight_index (Optional[int [https://docs.python.org/3/library/functions.html#int][) – Optional. The index in the CSV data row to use as the weight of the edge.
If no weight is provided, all records of an edge are presumed to have a weight of 1. Duplicates of an edge
will have their weights (or inferred weight) aggregated into a single value.

	ignored_values (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional. A list of values to ignore if present in the row, such as
“NULL” or “”

	Returns

	A partially applied function that partially applies yet more arguments prior to the final operation
function

	Return type

	Callable[[networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]], Callable[[List[str [https://docs.python.org/3/library/stdtypes.html#str]]], None [https://docs.python.org/3/library/constants.html#None]]]

	
topologic.projection.vertex_with_collection_metadata(headers: List[str], vertex_id_index: int, ignored_values: Optional[List[str]] = None) → Callable[[networkx.classes.graph.Graph], Callable[[List[str]], None]]

	This function is an unlikely function to use; if you have vertex metadata you wish to load into the networkx.Graph
where the vertex_id is repeated, it would be a better choice for you to compact those into a single record
with a specific, string representable format of multiple metadata entries. However, this function can be used
when you aren’t sure what you have. Like the edge_with_collection_metadata projection, this function will
create a List of dictionaries for each instance of metadata it sees for a given vertex_id.

Note: If the vertex_id for a given row does not exist in the graph, NO METADATA WILL BE RETAINED.

See package docstrings for more details on these currying functions.

	Parameters

	
	headers (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Headers from a CSV row to use as metadata attribute keys

	vertex_id_index (int [https://docs.python.org/3/library/functions.html#int]) – The index in the CSV data row to use as the vertex id in this graph

	ignored_values (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional. A list of values to ignore if present in the row, such as
“NULL” or “”

	Returns

	A partially applied function that partially applies yet more arguments prior to the final operation
function

	Return type

	Callable[[networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]], Callable[[List[str [https://docs.python.org/3/library/stdtypes.html#str]]], None [https://docs.python.org/3/library/constants.html#None]]]

	
topologic.projection.vertex_with_single_metadata(headers: List[str], vertex_id_index: int, ignored_values: List[str] = None) → Callable[[networkx.classes.graph.Graph], Callable[[List[str]], None]]

	Function will project vertex metadata into the graph. If prior data exists for the vertex_id, the later instance
of data for the vertex_id will clobber it.

Note: If the vertex_id for a given row does not exist in the graph, NO METADATA WILL BE RETAINED.

See package docstrings for more details on these currying functions and on the attributes datastructure.

	Parameters

	
	headers (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Headers from a CSV row to use as metadata attribute keys

	vertex_id_index (int [https://docs.python.org/3/library/functions.html#int]) – The index in the CSV data row to use as the vertex id in this graph

	ignored_values (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional. A list of values to ignore if present in the row, such as
“NULL” or “”

	Returns

	A partially applied function that partially applies yet more arguments prior to the final operation
function

	Return type

	Callable[[networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]], Callable[[List[str [https://docs.python.org/3/library/stdtypes.html#str]]], None [https://docs.python.org/3/library/constants.html#None]]]

topologic.similarity package

	
topologic.similarity.ari(primary_partition: Dict[Any, int], test_partition: Dict[Any, int]) → float

	Given two partition schemas, a primary partition mapping (the most accurate representation of truth) and the test
partition mapping (to be scored against that accurate representation of truth), calculate the Adjusted Rand Index.

See https://en.wikipedia.org/wiki/Rand_index

	Parameters

	
	int] primary_partition (Dict[Any,) – The most accurate representation of truth for cluster or community
membership of nodes. The keys are vertex labels and the values are the cluster/community/partition labels.

	int] test_partition (Dict[Any,) – The partition mapping to compare against the primary partition. The keys are
vertex labels and the values are the cluster/community/partition labels.

	Returns

	The adjusted rand index for the two mappings

	Rtype float

	

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the primary partition and test partition do not have an identical vertex label set.

topologic.statistics package

	
topologic.statistics.cut_edges_by_weight(graph: networkx.classes.graph.Graph, cut_threshold: Union[int, float], cut_process: topologic.statistics.make_cuts.MakeCuts, weight_attribute: str = 'weight', prune_isolates: bool = False) → networkx.classes.graph.Graph

	Given a graph, a cut threshold, and a cut_process, create a new Graph that contains only the edges that are not
pruned.

Note: Edges without a weight_attribute field will be excluded from these cuts. Enable logging to view any
messages about edges without weights.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The graph that will be copied and pruned.

	cut_threshold (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) – The threshold for making cuts based on weight.

	cut_process (MakeCuts) – Describes how we should make the cut; cut all edges larger or smaller than the
cut_threshold, and whether exclusive or inclusive.

	weight_attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – The weight attribute name in the data dictionary. Default is weight.

	prune_isolates (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, remove any vertex that no longer has an edge. Note that this only prunes
vertices which have edges to be pruned; any isolate vertex prior to any edge cut will be retained.

	Returns

	Pruned copy of the graph

	Return type

	networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]

	
topologic.statistics.cut_vertices_by_betweenness_centrality(graph: networkx.classes.graph.Graph, cut_threshold: Union[int, float], cut_process: topologic.statistics.make_cuts.MakeCuts, num_random_samples: Optional[int] = None, normalized: bool = True, weight_attribute: Optional[str] = None, include_endpoints: bool = False, random_seed: Union[int, random.Random, None] = None) → networkx.classes.graph.Graph

	Given a graph and a cut_threshold and a cut_process, return a copy of the graph with the vertices outside of the
cut_threshold.

The betweenness centrality calculation can take advantage of networkx’ implementation of randomized sampling
by providing num_random_samples (or k, in networkx betweenness_centrality nomenclature).

See: https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.centrality.betweenness_centrality.html
for more details.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The graph that will be copied and pruned.

	cut_threshold (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) – The threshold for making cuts based on betweenness centrality.

	cut_process (MakeCuts) – Describes how we should make the cut; cut all edges larger or smaller than the
cut_threshold, and whether exclusive or inclusive.

	num_random_samples (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Use num_random_samples for vertex samples to estimate betweenness.
num_random_samples should be <= len(graph.nodes). The larger num_random_samples is, the better the
approximation.

	normalized (bool [https://docs.python.org/3/library/functions.html#bool]) – If True the betweenness values are normalized by 2/((n-1)(n-2)) for graphs, and 1/((n-1)(n-2))
for directed graphs where n is the number of vertices in the graph.

	weight_attribute (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, all edge weights are considered equal. Otherwise holds the name of
the edge attribute used as weight.

	include_endpoints (bool [https://docs.python.org/3/library/functions.html#bool]) – If True include the endpoints in the shortest path counts.

	random_seed (Optional[Union[int [https://docs.python.org/3/library/functions.html#int], random.Random [https://docs.python.org/3/library/random.html#random.Random]]]) – Random seed or preconfigured random instance to be used for
randomly selecting random samples.
Only used if num_random_samples is set. None will generate a new random state. Specifying a random state
will provide consistent results between runs.

	Returns

	Pruned copy of the graph

	Return type

	networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]

	
topologic.statistics.cut_vertices_by_degree_centrality(graph: networkx.classes.graph.Graph, cut_threshold: Union[int, float], cut_process: topologic.statistics.make_cuts.MakeCuts) → networkx.classes.graph.Graph

	Given a graph and a cut_threshold and a cut_process, return a copy of the graph with the vertices outside of the
cut_threshold.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The graph that will be copied and pruned.

	cut_threshold (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) – The threshold for making cuts based on degree centrality.

	cut_process (MakeCuts) – Describes how we should make the cut; cut all edges larger or smaller than the
cut_threshold, and whether exclusive or inclusive.

	Returns

	Pruned copy of the graph

	Return type

	networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]

	
class topologic.statistics.DefinedHistogram

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Contains the histogram and the edges of the bins in the histogram.

The bin_edges will have a length 1 greater than the histogram, as it defines the minimal and maximal edges as well
as each edge in between.

	
bin_edges

	Alias for field number 1

	
histogram

	Alias for field number 0

	
topologic.statistics.filter_function_for_make_cuts(cut_threshold: Union[int, float], cut_process: topologic.statistics.make_cuts.MakeCuts) → Callable[[Tuple[Any, Union[int, float]]], bool]

	

	
topologic.statistics.histogram_betweenness_centrality(graph: networkx.classes.graph.Graph, bin_directive: Union[int, List[Union[float, int]], numpy.ndarray, str] = 10, num_random_samples: Optional[int] = None, normalized: bool = True, weight_attribute: Optional[str] = None, include_endpoints: bool = False, random_seed: Union[int, random.Random, None] = None) → topologic.statistics.defined_histogram.DefinedHistogram

	Generates a histogram of the vertex betweenness centrality of the provided graph.
Histogram function is fundamentally proxied through to numpy’s histogram function, and bin selection
follows numpy.histogram processes.

The betweenness centrality calculation can take advantage of networkx’ implementation of randomized sampling
by providing num_random_samples (or k, in networkx betweenness_centrality nomenclature).

See: https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.centrality.betweenness_centrality.html
for more details.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – the graph. No changes will be made to it.

	bin_directive (Union[int [https://docs.python.org/3/library/functions.html#int], List[Union[float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int]]], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Is passed directly through to numpy’s
“histogram” (and thus, “histogram_bin_edges”) functions.
See: https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
In short description: if an int is provided, we use bin_directive number of equal range bins.
If a sequence is provided, these bin edges will be used and can be sized to whatever size you prefer.
Note that the np.ndarray should be ndim=1 and the values should be float or int.

	num_random_samples (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Use num_random_samples for vertex samples to estimate betweeness.
num_random_samples should be <= len(graph.nodes). The larger num_random_samples is, the better the
approximation.

	normalized (bool [https://docs.python.org/3/library/functions.html#bool]) – If True the betweenness values are normalized by 2/((n-1)(n-2)) for graphs, and
1/((n-1)(n-2)) for directed graphs where n is the number of vertices in the graph.

	weight_attribute (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, all edge weights are considered equal. Otherwise holds the name of
the edge attribute used as weight.

	include_endpoints (bool [https://docs.python.org/3/library/functions.html#bool]) – If True include the endpoints in the shortest path counts.

	random_seed (Optional[Union[int [https://docs.python.org/3/library/functions.html#int], random.Random [https://docs.python.org/3/library/random.html#random.Random]]]) – Random seed or preconfigured random instance to be used for
randomly selecting random samples. Only used if num_random_samples is set. None will generate a new random
state. Specifying a random state will provide consistent results between runs.

	Returns

	A named tuple that contains the histogram and the bin_edges used in the histogram

	Return type

	DefinedHistogram

	
topologic.statistics.histogram_degree_centrality(graph: networkx.classes.graph.Graph, bin_directive: Union[int, List[Union[float, int]], numpy.ndarray, str] = 10) → topologic.statistics.defined_histogram.DefinedHistogram

	Generates a histogram of the vertex degree centrality of the provided graph.
Histogram function is fundamentally proxied through to numpy’s histogram function, and bin selection
follows numpy.histogram processes.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – the graph. No changes will be made to it.

	bin_directive (Union[int [https://docs.python.org/3/library/functions.html#int], List[Union[float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int]]], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Is passed directly through to numpy’s
“histogram” (and thus, “histogram_bin_edges”) functions.
See: https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
In short description: if an int is provided, we use bin_directive number of equal range bins.
If a sequence is provided, these bin edges will be used and can be sized to whatever size you prefer
Note that the np.ndarray should be ndim=1 and the values should be float or int.

	Returns

	A named tuple that contains the histogram and the bin_edges used in the histogram

	Return type

	DefinedHistogram

	
topologic.statistics.histogram_edge_weight(graph: networkx.classes.graph.Graph, bin_directive: Union[int, List[Union[float, int]], numpy.ndarray, str] = 10, weight_attribute: str = 'weight') → topologic.statistics.defined_histogram.DefinedHistogram

	Generates a histogram of the edge weights of the provided graph.
Histogram function is fundamentally proxied through to numpy’s histogram function, and bin selection
follows numpy.histogram processes.

Note: Edges without a weight_attribute field will be excluded from this histogram. Enable logging to view any
messages about edges without weights.

	Parameters

	
	graph (networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#networkx.Graph]) – the graph. No changes will be made to it.

	bin_directive (Union[int [https://docs.python.org/3/library/functions.html#int], List[Union[float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int]]], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Is passed directly through to numpy’s
“histogram” (and thus, “histogram_bin_edges”) functions.
See: https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
In short description: if an int is provided, we use bin_directive number of equal range bins.
If a sequence is provided, these bin edges will be used and can be sized to whatever size you prefer
Note that the np.ndarray should be ndim=1 and the values should be float or int.

	weight_attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – The weight attribute name in the data dictionary. Default is weight.

	Returns

	A named tuple that contains the histogram and the bin_edges used in the histogram

	Return type

	DefinedHistogram

	
class topologic.statistics.MakeCuts

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

	
LARGER_THAN_EXCLUSIVE = 2

	

	
LARGER_THAN_INCLUSIVE = 1

	

	
SMALLER_THAN_EXCLUSIVE = 4

	

	
SMALLER_THAN_INCLUSIVE = 3

	

System Requirements

topologic is written for Python 3.6. It is well tested under Python 3.7 and may work well with Python 3.8. It makes use of type hinting heavily, so it is not likely to work with Python 3.5.

In addition, some of the library dependencies for topologic must be built on your system, and will require C++ build tools to complete. If you don’t already have these, the install process will fail, and you can try some of the following steps to fix your issues.

Windows

Visit Visual Studio [https://visualstudio.microsoft.com/downloads/] and select the Tools for Visual Studio 2017 header. Then download and install the Build Tools for Visual Studio 2017.

Ubuntu Linux

If using Python3.6:

sudo apt install build-essential python3.6-dev

If using Python3.7:

sudo apt install build-essential python3.7-dev

Release Notes

0.1.1

	Issue 29 [https://github.com/microsoft/topologic/issues/29] Fixed bug in topologic.io.from_dataset where an empty networkx graph object (Graph, DiGraph, etc) was being treated as if no networkx Graph object were provided at all.

	Added is_digraph parameter to topologic.io.from_file. This parameter defaults to False for original behavior. Setting it to True will create a networkx DiGraph object instead.

0.1.0

	Initial release

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 topologic	

 	
 	
 topologic.embedding	

 	
 	
 topologic.embedding.clustering	

 	
 	
 topologic.embedding.distance	

 	
 	
 topologic.embedding.metric	

 	
 	
 topologic.io	

 	
 	
 topologic.partition	

 	
 	
 topologic.projection	

 	
 	
 topologic.similarity	

 	
 	
 topologic.statistics	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	adjacency_embedding() (in module topologic.embedding)

 	
 	ADJACENCY_SPECTRAL_EMBEDDING (topologic.embedding.EmbeddingMethod attribute)

 	ari() (in module topologic.similarity)

B

 	
 	bin_edges (topologic.statistics.DefinedHistogram attribute)

C

 	
 	calculate_internal_external_densities() (in module topologic.embedding.metric)

 	column_names() (topologic.io.GraphProperties method)

 	common_column_values() (topologic.io.GraphProperties method)

 	community_partitions (topologic.PartitionedGraph attribute)

 	connected_components_generator() (in module topologic)

 	
 	consolidate_bipartite() (in module topologic.io)

 	cosine() (in module topologic.embedding.distance)

 	CsvDataset (class in topologic.io)

 	cut_edges_by_weight() (in module topologic.statistics)

 	cut_vertices_by_betweenness_centrality() (in module topologic.statistics)

 	cut_vertices_by_degree_centrality() (in module topologic.statistics)

D

 	
 	dbscan() (in module topologic.embedding.clustering)

 	DefinedHistogram (class in topologic.statistics)

 	
 	destination() (topologic.io.PotentialEdgeColumnPair method)

 	dialect() (topologic.io.CsvDataset method)

 	DialectException

E

 	
 	edge_ignore_metadata() (in module topologic.projection)

 	EDGE_WEIGHT (topologic.embedding.SampleMethod attribute)

 	edge_with_collection_metadata() (in module topologic.projection)

 	edge_with_single_metadata() (in module topologic.projection)

 	embedding (topologic.embedding.EmbeddingContainer attribute)

 	(topologic.embedding.OutOfSampleEmbeddingContainer attribute)

 	
 	embedding_distances_from() (in module topologic.embedding.distance)

 	EmbeddingContainer (class in topologic.embedding)

 	EmbeddingMethod (class in topologic.embedding)

 	euclidean() (in module topologic.embedding.distance)

F

 	
 	FIELD_SIZE_LIMIT (topologic.io.CsvDataset attribute)

 	filter_function_for_make_cuts() (in module topologic.statistics)

 	find_edges() (in module topologic.io)

 	
 	find_elbows() (in module topologic.embedding)

 	from_dataset() (in module topologic.io)

 	from_file() (in module topologic.io)

G

 	
 	gaussian_mixture_model() (in module topologic.embedding.clustering)

 	generate_omnibus_matrix() (in module topologic.embedding)

 	
 	graph (topologic.PartitionedGraph attribute)

 	GraphProperties (class in topologic.io)

H

 	
 	headers() (topologic.io.CsvDataset method)

 	histogram (topologic.statistics.DefinedHistogram attribute)

 	
 	histogram_betweenness_centrality() (in module topologic.statistics)

 	histogram_degree_centrality() (in module topologic.statistics)

 	histogram_edge_weight() (in module topologic.statistics)

I

 	
 	induce_graph_by_communities() (in module topologic.partition)

 	
 	InvalidGraphError

K

 	
 	kmeans() (in module topologic.embedding.clustering)

L

 	
 	laplacian_embedding() (in module topologic.embedding)

 	LAPLACIAN_SPECTRAL_EMBEDDING (topologic.embedding.EmbeddingMethod attribute)

 	LARGER_THAN_EXCLUSIVE (topologic.statistics.MakeCuts attribute)

 	
 	LARGER_THAN_INCLUSIVE (topologic.statistics.MakeCuts attribute)

 	largest_connected_component() (in module topologic)

 	load() (in module topologic.io)

 	louvain() (in module topologic.partition)

M

 	
 	mahalanobis() (in module topologic.embedding.distance)

 	
 	MakeCuts (class in topologic.statistics)

 	mean_average_precision() (in module topologic.embedding.metric)

N

 	
 	node2vec_embedding() (in module topologic.embedding)

 	
 	number_connected_components() (in module topologic)

O

 	
 	omnibus_embedding() (in module topologic.embedding)

 	
 	OutOfSampleEmbeddingContainer (class in topologic.embedding)

P

 	
 	PartitionedGraph (class in topologic)

 	pca() (in module topologic.embedding)

 	
 	potential_edge_column_pairs() (topologic.io.GraphProperties method)

 	PotentialEdgeColumnPair (class in topologic.io)

 	procrustes_error() (in module topologic.embedding.metric)

Q

 	
 	q_score() (in module topologic.partition)

R

 	
 	rare_column_values() (topologic.io.GraphProperties method)

 	
 	reader() (topologic.io.CsvDataset method)

S

 	
 	sample_graph_by_edge_weight() (in module topologic.embedding)

 	sample_graph_by_vertex_degree() (in module topologic.embedding)

 	SampleMethod (class in topologic.embedding)

 	score() (topologic.io.PotentialEdgeColumnPair method)

 	self_loop_augmentation() (in module topologic)

 	
 	sigma (topologic.embedding.OutOfSampleEmbeddingContainer attribute)

 	SMALLER_THAN_EXCLUSIVE (topologic.statistics.MakeCuts attribute)

 	SMALLER_THAN_INCLUSIVE (topologic.statistics.MakeCuts attribute)

 	source() (topologic.io.PotentialEdgeColumnPair method)

 	starting_index_of_oos_embedding (topologic.embedding.OutOfSampleEmbeddingContainer attribute)

T

 	
 	tensor_projection_reader() (in module topologic.io)

 	tensor_projection_writer() (in module topologic.io)

 	to_dictionary() (topologic.embedding.EmbeddingContainer method)

 	(topologic.embedding.OutOfSampleEmbeddingContainer method)

 	topologic (module)

 	topologic.embedding (module)

 	topologic.embedding.clustering (module)

 	
 	topologic.embedding.distance (module)

 	topologic.embedding.metric (module)

 	topologic.io (module)

 	topologic.partition (module)

 	topologic.projection (module)

 	topologic.similarity (module)

 	topologic.statistics (module)

 	tsne() (in module topologic.embedding)

U

 	
 	u (topologic.embedding.OutOfSampleEmbeddingContainer attribute)

 	
 	UnweightedGraphError

V

 	
 	valid_distance_functions() (in module topologic.embedding.distance)

 	vector_distance() (in module topologic.embedding.distance)

 	VERTEX_DEGREE (topologic.embedding.SampleMethod attribute)

 	vertex_labels (topologic.embedding.EmbeddingContainer attribute)

 	(topologic.embedding.OutOfSampleEmbeddingContainer attribute)

 	
 	vertex_labels_failing_inference (topologic.embedding.OutOfSampleEmbeddingContainer attribute)

 	vertex_with_collection_metadata() (in module topologic.projection)

 	vertex_with_single_metadata() (in module topologic.projection)

W

 	
 	wards_clustering() (in module topologic.embedding.clustering)

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to topologic’s documentation!

 		
 topologic Library Documentation

 		
 topologic package

 		
 Subpackages

 		
 System Requirements

 		
 Windows

 		
 Ubuntu Linux

 		
 Release Notes

 		
 0.1.1

 		
 0.1.0

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

