
topologic Documentation
Release 0.1.9.dev20221013211904

Microsoft

Oct 13, 2022

CONTENTS:

1 topologic Library Documentation 1
1.1 topologic package . 1

2 System Requirements 35
2.1 Windows . 35
2.2 Ubuntu Linux . 35

3 Release Notes 37
3.1 0.1.8 . 37
3.2 0.1.7 . 37
3.3 0.1.6 . 37
3.4 0.1.5 . 37
3.5 0.1.4 . 37
3.6 0.1.3 . 37
3.7 0.1.2 . 38
3.8 0.1.1 . 38
3.9 0.1.0 . 38

4 Indices and tables 39

Python Module Index 41

Index 43

i

ii

CHAPTER

ONE

TOPOLOGIC LIBRARY DOCUMENTATION

1.1 topologic package

topologic.connected_components_generator(graph: networkx.classes.graph.Graph) →
Generator[networkx.classes.graph.Graph, None,
None]

Returns a Generator that will provide each component as a networkx.Graph copy

Parameters graph (networkx.Graph) – The networkx graph object to create a connected com-
ponent generator from

Returns A Generator that returns a copy of the subgraph corresponding to a connected component
of graph

Return type Generator[networkx.Graph]

exception topologic.DialectException(message)
Bases: BaseException

exception topologic.InvalidGraphError(message)
Bases: BaseException

topologic.largest_connected_component(graph: networkx.classes.graph.Graph, weakly: bool
= True)→ networkx.classes.graph.Graph

Returns the largest connected component of the graph.

Parameters

• graph (networkx.Graph) – The networkx graph object to select the largest connected
component from. Can be either directed or undirected.

• weakly (bool) – Whether to find weakly connected components or strongly connected
components for directed graphs.

Returns A copy of the largest connected component as an nx.Graph object

Return type networkx.Graph

topologic.number_connected_components(graph: networkx.classes.graph.Graph)→ int
Returns the number of connected components in the Graph.

This function calls the appropriate newtorkx connected components function depending on whether it is Undi-
rected or Directed.

Parameters graph (networkx.Graph) – The networkx graph object to determine the number
of connected components for

Returns number of connected components (and in the case of a directed graph, strongly connected)

1

https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#bool
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph

topologic Documentation, Release 0.1.9.dev20221013211904

Return type int

class topologic.PartitionedGraph
Bases: tuple

A PartitionedGraph combines a networkx graph object with a global community partitioning for that graph.

property community_partitions
Alias for field number 1

property graph
Alias for field number 0

topologic.diagonal_augmentation(graph: Union[networkx.classes.graph.Graph, net-
workx.classes.digraph.DiGraph], weight_column: str =
'weight')→ networkx.classes.graph.Graph

Replaces the diagonal of adjacency matrix of the graph with the weighted degree / number of vertices in graph.
For directed graphs, the weighted in and out degree is averaged.

Modifies the provided graph in place as well as returning it.

Param The networkx graph which will get a replaced diagonal

Parameters weight_column (str) – The weight column of the edge

Returns The networkx Graph or DiGraph object that was modified in place.

Return type Union[nx.Graph, nx.DiGraph]

exception topologic.UnweightedGraphError(message)
Bases: BaseException

1.1.1 Subpackages

topologic.embedding package

topologic.embedding.adjacency_embedding(graph: networkx.classes.graph.Graph, maxi-
mum_dimensions: int = 100, elbow_cut: Op-
tional[int] = 1, weight_column: str = 'weight',
svd_seed: Optional[int] = None, num_iterations:
int = 5, power_iteration_normalizer: str =
'QR', num_oversamples: int = 10) → topo-
logic.embedding.embedding_container.EmbeddingContainer

Generates a spectral embedding based upon the adjacency matrix of the graph.

See also: https://csustan.csustan.edu/~tom/Clustering/GraphLaplacian-tutorial.pdf

Parameters

• graph (networkx.Graph) – graph_augmented_sparse_matrix networkx Graph object
containing no more than one connected component. Note that if the graph is a directed
graph, the resulting dimensionality of the embedding will be twice that of an undirected
graph

• maximum_dimensions (int) – Maximum dimensions of embeddings that will be re-
turned - defaults to 100. Actual dimensions of resulting embeddings should be significantly
smaller, but will never be over this value.

• elbow_cut (Optional[int]) – scree plot elbow detection will detect (usually) many
elbows. This value specifies which elbow to use prior to filtering out extraneous dimensions.
If None, then an embedding of size maximum_dimensions will be returned.

2 Chapter 1. topologic Library Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#BaseException
https://csustan.csustan.edu/~tom/Clustering/GraphLaplacian-tutorial.pdf
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

topologic Documentation, Release 0.1.9.dev20221013211904

• weight_column (str) – The weight column to use in the Graph.

• svd_seed (Optional[int]) – If not provided, uses a random number every time, mak-
ing consistent results difficult Set this to a random int if you want consistency between
executions over the same graph.

• num_iterations (int) – The number of iterations to be used in the svd solver.

• num_oversamples (int) – Additional number of random vectors to sample the range
of M so as to ensure proper conditioning. The total number of random vectors used to find
the range of M is n_components + n_oversamples. Smaller number can improve speed but
can negatively impact the quality of approximation of singular vectors and singular values.

• power_iteration_normalizer (Optional[str]) – Whether the power itera-
tions are normalized with step-by-step QR factorization (the slowest but most accurate),
‘none’ (the fastest but numerically unstable when n_iter is large, e.g. typically 5 or larger),
or ‘LU’ factorization (numerically stable but can lose slightly in accuracy). The ‘auto’ mode
applies no normalization if num_iterations <= 2 and switches to LU otherwise.

Options: ‘auto’ (default), ‘QR’, ‘LU’, ‘none’

Returns EmbeddingContainer containing a matrix, which itself contains the embedding for each
node. the tuple also contains a vector containing the corresponding vertex labels for each row in
the matrix. the matrix and vector are positionally correlated.

Return type EmbeddingContainer

class topologic.embedding.EmbeddingContainer(embedding, vertex_labels)
Bases: tuple

property embedding
Alias for field number 0

to_dictionary()

property vertex_labels
Alias for field number 1

class topologic.embedding.EmbeddingMethod
Bases: enum.Enum

An enum to represent which embedding method to use when generating an Omnibus embedding

ADJACENCY_SPECTRAL_EMBEDDING = 0

LAPLACIAN_SPECTRAL_EMBEDDING = 1

topologic.embedding.find_elbows(iterable_to_search: Union[list, numpy.array], num_elbows: int
= 1, threshold: int = 0)→ numpy.array

An implementation of profile likelihood as outlined in Zhu and Ghodsi References, Zhu, Mu and Ghodsi, Ali
(2006), Automatic dimensionality selection from the scree plot via the use of profile likelihood, Computational
Statistics & Data Analysis, Volume 51 Issue 2, pp 918-930, November, 2006

Examples

>>> input_data = [2, 3, 4, 5, 6, 7, 8, 9]
>>> result: np.array = find_elbows(input_data, num_elbows=1,
→˓threshold=0)
>>> result.size
1

Parameters

1.1. topologic package 3

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/enum.html#enum.Enum

topologic Documentation, Release 0.1.9.dev20221013211904

• iterable_to_search – An ordered or unordered list of values that will be used to find
the elbows.

• num_elbows – The number of elbows to return

• threshold – Smallest value to consider. Nonzero thresholds will affect elbow selection.

Returns A numpy array containing elbows

topologic.embedding.generate_omnibus_matrix(matrices: List[Union[numpy.ndarray,
scipy.sparse.csr.csr_matrix]]) →
numpy.ndarray

Generate the omnibus matrix from a list of adjacency or laplacian matrices as described by ‘A central limit
theorem for an omnibus embedding of random dot product graphs.’

Given an iterable of matrices a, b, . . . n then the omnibus matrix is defined as:

[[a, .5 * (a + b), ..., .5 * (a + n)],
[.5 * (b + a), b, ..., .5 * (b + n)],
[..., ..., ..., ...],
[.5 * (n + a), .5 * (n + b, ..., n]
]

The current iteration of this function operates in O(n) but a further optimization could take it to O(.5 * n)

See also: The original paper - https://arxiv.org/abs/1705.09355

Parameters matrices (List[Union[numpy.ndarray, scipy.sparse.
csr_matrix]]) – The list of matrices to generate the Omnibus matrix

Returns An Omnibus matrix

topologic.embedding.laplacian_embedding(graph: networkx.classes.graph.Graph, maxi-
mum_dimensions: int = 100, elbow_cut: Op-
tional[int] = 1, weight_column: str = 'weight',
svd_seed: Optional[int] = None, num_iterations:
int = 5, power_iteration_normalizer: str =
'QR', num_oversamples: int = 10) → topo-
logic.embedding.embedding_container.EmbeddingContainer

Generates a spectral embedding based upon the Laplacian matrix of the graph.

See also: https://csustan.csustan.edu/~tom/Clustering/GraphLaplacian-tutorial.pdf

Parameters

• graph (networkx.Graph) – A networkx Graph object containing no more than one
connected component. Note that if the graph is a directed graph, the resulting dimensionality
of the embedding will be twice that of an undirected graph

• maximum_dimensions (int) – Maximum dimensions of embeddings that will be re-
turned - defaults to 100. Actual dimensions of resulting embeddings should be significantly
smaller, but will never be over this value.

• elbow_cut (Optional[int]) – scree plot elbow detection will detect (usually) many
elbows. This value specifies which elbow to use prior to filtering out extraneous dimensions.
If None, then an embedding of size maximum_dimensions will be returned.

• weight_column (str) – The weight column to use in the Graph.

• svd_seed (Optional[int]) – If not provided, uses a random number every time, mak-
ing consistent results difficult Set this to a random int if you want consistency between
executions over the same graph.

4 Chapter 1. topologic Library Documentation

https://arxiv.org/abs/1705.09355
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://csustan.csustan.edu/~tom/Clustering/GraphLaplacian-tutorial.pdf
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

topologic Documentation, Release 0.1.9.dev20221013211904

• num_iterations (int) – The number of iterations to be used in the svd solver.

• num_oversamples (int) – Additional number of random vectors to sample the range
of M so as to ensure proper conditioning. The total number of random vectors used to find
the range of M is n_components + n_oversamples. Smaller number can improve speed but
can negatively impact the quality of approximation of singular vectors and singular values.

• power_iteration_normalizer (Optional[str]) – Whether the power itera-
tions are normalized with step-by-step QR factorization (the slowest but most accurate),
‘none’ (the fastest but numerically unstable when n_iter is large, e.g. typically 5 or larger),
or ‘LU’ factorization (numerically stable but can lose slightly in accuracy). The ‘auto’ mode
applies no normalization if num_iterations <= 2 and switches to LU otherwise.

Options: ‘auto’ (default), ‘QR’, ‘LU’, ‘none’

Returns EmbeddingContainer containing a matrix, which itself contains the embedding for each
node. the tuple also contains a vector containing the corresponding vertex labels for each row in
the matrix. the matrix and vector are positionally correlated.

Return type EmbeddingContainer

topologic.embedding.node2vec_embedding(graph: networkx.classes.graph.Graph,
num_walks: int = 10, walk_length: int =
80, return_hyperparameter: int = 1, in-
out_hyperparameter: int = 1, dimensions: int = 128,
window_size: int = 10, workers: int = 8, iterations:
int = 1, interpolate_walk_lengths_by_node_degree:
bool = True) → topo-
logic.embedding.embedding_container.EmbeddingContainer

Generates a node2vec embedding from a given graph. Will follow the word2vec algorithm to create the embed-
ding.

Parameters

• graph (networkx.Graph) – A networkx graph. If the graph is unweighted, the weight
of each edge will default to 1

• num_walks (int) – Number of walks per source. Default is 10.

• walk_length (int) – Length of walk per source. Default is 80.

• return_hyperparameter (int) – Return hyperparameter (p). Default is 1.

• inout_hyperparameter (int) – Inout hyperparameter (q). Default is 1.

• dimensions (int) – Dimensionality of the word vectors. Default is 128.

• window_size (int) – Maximum distance between the current and predicted word within
a sentence. Default is 10.

• workers (int) – Use these many worker threads to train the model. Default is 8.

• iterations (int) – Number of epochs in stochastic gradient descent (SGD)

• interpolate_walk_lengths_by_node_degree (bool) – Use a dynamic walk
length that corresponds to each nodes degree. If the node is in the bottom 20 percentile,
default to a walk length of 1. If it is in the top 10 percentile, use walk_length. If it is in the
20-80 percentiles, linearly interpolate between 1 and walk_length.

This will reduce lower degree nodes from biasing your resulting embedding. If a low degree
node has the same number of walks as a high degree node (which it will if this setting is
not on), then the lower degree nodes will take a smaller breadth of random walks when

1.1. topologic package 5

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

topologic Documentation, Release 0.1.9.dev20221013211904

compared to the high degree nodes. This will result in your lower degree walks dominating
your higher degree nodes.

Returns tuple containing a matrix, which itself contains the embedding for each node. the tuple
also contains a vector containing the corresponding vertex labels for each row in the matrix. the
matrix and vector are positionally correlated.

Return type EmbeddingContainer

topologic.embedding.omnibus_embedding(graphs: List[networkx.classes.graph.Graph],
maximum_dimensions: int = 100, elbow_cut:
Optional[int] = 1, embedding_method: topo-
logic.embedding.embedding_methods.EmbeddingMethod
= <EmbeddingMethod.LAPLACIAN_SPECTRAL_EMBEDDING:
1>, svd_seed: Optional[int] = None, num_iterations:
int = 5, power_iteration_normalizer: str
= 'QR', num_oversamples: int = 10) →
List[Tuple[topologic.embedding.embedding_container.EmbeddingContainer,
topologic.embedding.embedding_container.EmbeddingContainer]]

Generates a pairwise omnibus embedding for each pair of graphs in a list of graphs. If given graphs A, B, and
C, the embeddings will be computed for A,B and B,C.

There should be exactly the same number of nodes in each graph with exactly the same labels. The list of graphs
should represent a time series and should be in an order such that time is continuous through the list of graphs.

If the labels differ between each pair of graphs, then those nodes will only be found in the resulting embedding
if they exist in the largest connected component of the union of all edges across all graphs in the time series.

Parameters

• graphs (List[networkx.Graph]) – A list of graphs that will be used to generate the
omnibus embedding. Each graph should have exactly the same vertices as each of the other
graphs. The order of the graphs in the list matter. The first graph will be at time 0 and each
following graph will increment time by 1.

• maximum_dimensions (int) – Maximum dimensions of embeddings that will be re-
turned - defaults to 100. Actual dimensions of resulting embeddings should be significantly
smaller, but will never be over this value.

• elbow_cut (int) – scree plot elbow detection will detect (usually) many elbows. This
value specifies which elbow to use prior to filtering out extraneous dimensions.

• embedding_method (topologic.embedding.EmbeddingMethod) – The em-
bedding technique used to generate the Omnibus embedding.

• svd_seed (Optional[int]) – If not provided, uses a random number every time, mak-
ing consistent results difficult Set this to a random int if you want consistency between
executions over the same graph.

• num_iterations (int) – The number of iterations to be used in the svd solver.

• num_oversamples (int) – Additional number of random vectors to sample the range
of M so as to ensure proper conditioning. The total number of random vectors used to find
the range of M is n_components + n_oversamples. Smaller number can improve speed but
can negatively impact the quality of approximation of singular vectors and singular values.

• power_iteration_normalizer (Optional[str]) – Whether the power itera-
tions are normalized with step-by-step QR factorization (the slowest but most accurate),
‘none’ (the fastest but numerically unstable when n_iter is large, e.g. typically 5 or larger),
or ‘LU’ factorization (numerically stable but can lose slightly in accuracy). The ‘auto’ mode
applies no normalization if num_iterations <= 2 and switches to LU otherwise.

6 Chapter 1. topologic Library Documentation

https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

topologic Documentation, Release 0.1.9.dev20221013211904

Options: ‘auto’ (default), ‘QR’, ‘LU’, ‘none’

Returns A List of EmbeddingContainers each containing a matrix, which itself contains the embed-
ding for each node. the tuple also contains a vector containing the corresponding vertex labels
for each row in the matrix. the matrix and vector are positionally correlated.

Return type List[(EmbeddingContainer, EmbeddingContainer)]

class topologic.embedding.OutOfSampleEmbeddingContainer(embedding, ver-
tex_labels, ver-
tex_labels_failing_inference,
start-
ing_index_of_oos_embedding,
u, sigma)

Bases: tuple

property embedding
Alias for field number 0

property sigma
Alias for field number 5

property starting_index_of_oos_embedding
Alias for field number 3

to_dictionary()

property u
Alias for field number 4

property vertex_labels
Alias for field number 1

property vertex_labels_failing_inference
Alias for field number 2

topologic.embedding.pca(embedding: numpy.ndarray, num_components: Union[str, int], whiten:
bool = False, svd_solver: str = 'auto', tolerance: float = 0.0, it-
erated_power: Union[int, str] = 'auto', random_state: Union[int,
numpy.random.mtrand.RandomState, None] = None)→ numpy.ndarray

Principal component analysis (PCA)

Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimen-
sional space.

It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the method of Halko
et al. 2009, depending on the shape of the input data and the number of components to extract.

Parameters

• embedding (numpy.ndarray) – The embedding in which PCA will be applied

• num_components (Union[str, int]) – If num_components == 'mle' and
svd_solver == 'full', Minka’s MLE is used to guess the dimension. Use
of num_components == 'mle' will interpret svd_solver == 'auto' as
svd_solver == 'full'.

If 0 < num_components < 1 and svd_solver == 'full', select the number of
components such that the amount of variance that needs to be explained is greater than the
percentage specified by num_components.

If svd_solver == 'arpack', the number of components must be strictly less than the
minimum of number of features and the number of samples.

1.1. topologic package 7

https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

topologic Documentation, Release 0.1.9.dev20221013211904

• whiten (bool) – When True (False by default) the components_ vectors are multiplied by
the square root of n_samples and then divided by the singular values to ensure uncorrelated
outputs with unit component-wise variances.

Whitening will remove some information from the transformed signal (the relative variance
scales of the components) but can sometime improve the predictive accuracy of the down-
stream estimators by making their data respect some hard-wired assumptions.

• svd_solver (str) –

auto : the solver is selected by a default policy based on X.shape and num_components: if
the input data is larger than 500x500 and the number of components to extract is lower
than 80% of the smallest dimension of the data, then the more efficient ‘randomized’
method is enabled. Otherwise the exact full SVD is computed and optionally truncated
afterwards.

full : run exact full SVD calling the standard LAPACK solver via scipy.linalg.svd and select
the components by postprocessing

arpack : run SVD truncated to num_components calling ARPACK solver via
scipy.sparse.linalg.svds. It requires strictly 0 < num_components < min(X.shape)

randomized : run randomized SVD by the method of Halko et al.

• tolerance (float) – Tolerance for singular values computed by svd_solver == ‘arpack’.
A float value >=0 with default 0

• iterated_power (Union[int, str]) – Number of iterations for the power method
computed by svd_solver == ‘randomized’.

• random_state (Optional[int]) – If int, random_state is the seed used by the ran-
dom number generator; If RandomState instance, random_state is the random number
generator; If None, the random number generator is the RandomState instance used by
np.random. Used when svd_solver == ‘arpack’ or ‘randomized’.

Returns A np.ndarray of principal axes in feature space, representing the directions of maximum
variance in the data. The components are sorted by variance`

Return type numpy.ndarray

topologic.embedding.sample_graph_by_edge_weight(graph, weight_column='weight',
weight_cutoff=None, percentage=0.1,
nodelist=None)

topologic.embedding.sample_graph_by_vertex_degree(graph, degree_cutoff=None, per-
centage=0.1, nodelist=None)

class topologic.embedding.SampleMethod
Bases: enum.Enum

An enumeration.

EDGE_WEIGHT = 1

VERTEX_DEGREE = 0

topologic.embedding.tsne(embedding: numpy.ndarray, num_components: int = 2, perplexity:
float = 30.0, early_exaggeration: float = 12.0, learning_rate: float =
200.0, num_iterations: int = 1000, num_iterations_without_progress:
int = 300, min_grad_norm: float = 1e-07, metric: str = 'euclidean',
init: str = 'random', verbose: int = 1, random_state: Union[int,
numpy.random.mtrand.RandomState, None] = None, method: str =
'barnes_hut', angle: float = 0.5)→ numpy.ndarray

t-distributed Stochastic Neighbor Embedding.

8 Chapter 1. topologic Library Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/enum.html#enum.Enum

topologic Documentation, Release 0.1.9.dev20221013211904

t-SNE is a tool to visualize high-dimensional data. It converts similarities between data points to joint probabili-
ties and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional
embedding and the high-dimensional data. t-SNE has a cost function that is not convex, i.e. with different ini-
tializations we can get different results.

It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data or Truncat-
edSVD for sparse data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of
features is very high. This will suppress some noise and speed up the computation of pairwise distances between
samples.

Parameters

• embedding (numpy.ndarray) – The embedding in which PCA will be applied

• num_components (int) – Dimension of the embedded space. Default 2

• perplexity (float) – The perplexity is related to the number of nearest neighbors
that is used in other manifold learning algorithms. Larger datasets usually require a larger
perplexity. Consider selecting a value between 5 and 50. The choice is not extremely critical
since t-SNE is quite insensitive to this parameter. Default 30.0

• early_exaggeration (float) – Controls how tight natural clusters in the original
space are in the embedded space and how much space will be between them. For larger
values, the space between natural clusters will be larger in the embedded space. Again,
the choice of this parameter is not very critical. If the cost function increases during initial
optimization, the early exaggeration factor or the learning rate might be too high. Default
12.0

• learning_rate (float) – The learning rate for t-SNE is usually in the range [10.0,
1000.0]. If the learning rate is too high, the data may look like a ‘ball’ with any point
approximately equidistant from its nearest neighbours. If the learning rate is too low, most
points may look compressed in a dense cloud with few outliers. If the cost function gets
stuck in a bad local minimum increasing the learning rate may help. Default 200.0

• num_iterations (int) – Maximum number of iterations for the optimization. Should
be at least 250. Default 1000

• num_iterations_without_progress (int) – Maximum number of iterations
without progress before we abort the optimization, used after 250 initial iterations with
early exaggeration. Note that progress is only checked every 50 iterations so this value is
rounded to the next multiple of 50. Default 300

• min_grad_norm (float) – If the gradient norm is below this threshold, the optimization
will be stopped. Default 1e-7

• metric (Union[str, Callable]) – The metric to use when calculating distance
between instances in a feature array. If metric is a string, it must be one of the options
allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pair-
wise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is “precomputed”, X is assumed to
be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair
of instances (rows) and the resulting value recorded. The callable should take two arrays
from X as input and return a value indicating the distance between them. The default is
“euclidean” which is interpreted as squared euclidean distance. Default ‘euclidean’

• init (Union[string, numpy.ndarray]) – Initialization of embedding. Possible
options are ‘random’, ‘pca’, and a numpy array of shape (n_samples, num_components).
PCA initialization cannot be used with precomputed distances and is usually more globally
stable than random initialization. Default ‘random’

• verbose (int) – Verbosity level. Default 1

1.1. topologic package 9

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

topologic Documentation, Release 0.1.9.dev20221013211904

• random_state (Optional[Union[int, numpy.random.RandomState]]) –
If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number gen-
erator is the RandomState instance used by np.random. Note that different initializations
might result in different local minima of the cost function.

• method (str) – By default the gradient calculation algorithm uses Barnes-Hut approxima-
tion running in O(NlogN) time. method=’exact’ will run on the slower, but exact, algorithm
in O(N^2) time. The exact algorithm should be used when nearest-neighbor errors need to
be better than 3%. However, the exact method cannot scale to millions of examples. Default
‘barnes_hut’

• angle (float) – Only used if method=’barnes_hut’ This is the trade-off between speed
and accuracy for Barnpcaes-Hut T-SNE. ‘angle’ is the angular size (referred to as theta in
[3]) of a distant node as measured from a point. If this size is below ‘angle’ then it is used
as a summary node of all points contained within it. This method is not very sensitive to
changes in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing
computation time and angle greater 0.8 has quickly increasing error. Default 0.5

Returns A np.ndarray of principal axes in feature space, representing the directions of maximum
variance in the data. The components are sorted by variance`

Return type numpy.ndarray

Subpackages

topologic.embedding.clustering package

topologic.embedding.clustering.dbscan(embedding: numpy.ndarray, eps: float = 0.5,
min_samples: int = 5, metric: str = 'minkowski',
metric_params: dict = None, algorithm: str =
'auto', leaf_size: int = 30, p: float = 2, sam-
ple_weight: array.array = None, n_jobs: int = None)
→ numpy.ndarray

Perform DBSCAN clustering from vector array or distance matrix.

Parameters

• embedding (numpy.ndarray) – An n x d array of vectors representing n labels in a d
dimensional space

• eps (Optional[float]) – The maximum distance between two samples for them to be
considered as in the same neighborhood.

• min_samples (Optional[int]) – The number of samples (or total weight) in a neigh-
borhood for a point to be considered as a core point. This includes the point itself.

• metric (Union[str, Callable[[float, float], float]]) – The metric
to use when calculating distance between instances in a feature array. If metric is
a string or callable, it must be one of the options allowed by sklearn.metrics.
pairwise_distances() for its metric parameter. If metric is “precomputed”, X is
assumed to be a distance matrix and must be square. X may be a sparse matrix, in which
case only “nonzero” elements may be considered neighbors for DBSCAN.

If metric is a callable function, it is called on each pair of instances (rows) and the resulting
value recorded. The callable should take two arrays from X as input and return a value
indicating the distance between them.

10 Chapter 1. topologic Library Documentation

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html#sklearn.metrics.pairwise_distances
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html#sklearn.metrics.pairwise_distances

topologic Documentation, Release 0.1.9.dev20221013211904

• metric_params (Optional[dict]) – Additional keyword arguments for the metric
function.

• algorithm (Optional[str]) – The algorithm to be used by the NearestNeighbors
module to compute pointwise distances and find nearest neighbors. Potential values:
{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

• leaf_size (Optional[int]) – Leaf size passed to BallTree or cKDTree. This can
affect the speed of the construction and query, as well as the memory required to store the
tree. The optimal value depends on the nature of the problem. Default 30

• p (Optional[float]) – The power of the Minkowski metric to be used to calculate
distance between points. Default 2.0

• sample_weight (Optional[Array[int]]) – Weight of each sample, such that a
sample with a weight of at least min_samples is by itself a core sample; a sample with
negative weight may inhibit its eps-neighbor from being core. Note that weights are abso-
lute, and default to 1.

• n_jobs (Optional[int]) – The number of parallel jobs to run for neighbors search.
None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors.

Returns The cluster labels for each vector in the given embedding. The vector at index n in the
embedding will have the label at index n in this returned array. Noisy samples are given the
value -1

Return type np.ndarray

topologic.embedding.clustering.gaussian_mixture_model(embedding: numpy.ndarray,
num_clusters: int = 1,
seed: int = None) →
numpy.ndarray

Performs gaussian mixture model clustering on the feature_matrix.

Parameters

• embedding (numpy.ndarray) – An n x d feature matrix; it is assumed that the d fea-
tures are ordered

• num_clusters (int) – How many clusters to look at between min_clusters and
max_clusters, default 1

• seed (Optional[int]) – The seed for numpy random, default None

Returns The cluster labels for each vector in the given embedding. The vector at index n in the
embedding will have the label at index n in this returned array

Return type np.ndarray

topologic.embedding.clustering.kmeans(embedding: numpy.ndarray, n_clusters: int = 1, init:
Union[str, numpy.ndarray] = 'k-means++', n_init: int
= 10, max_iter: int = 300, tolerance: float = 0.0001,
precompute_distances='auto', verbose: int = 0, ran-
dom_state: int = None, copy_x: bool = True, n_jobs:
int = None, algorithm: str = 'auto')→ numpy.ndarray

Performs kmeans clustering on the embedding.

Parameters

• embedding (numpy.ndarray) – An n x d array of vectors representing n labels in a d
dimensional space

1.1. topologic package 11

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

topologic Documentation, Release 0.1.9.dev20221013211904

• n_clusters (int) – The number of clusters to form as well as the number of centroids
to generate. Default 1

• init (Union[str, numpy.ndarray]) – Method for initialization, defaults to ‘k-
means++’:

’k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to speed
up convergence.

’random’: choose k observations (rows) at random from data for the initial centroids.

If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial
centers.

• n_init (int) – Number of time the k-means algorithm will be run with different centroid
seeds. The final results will be the best output of n_init consecutive runs in terms of inertia.
Default 10

• max_iter (int) – Maximum number of iterations of the k-means algorithm for a single
run. Default 300

• tolerance (float) – Relative tolerance with regards to inertia to declare convergence.
Default 1e-4

• precompute_distances (Union[bool, str]) – Precompute distances (faster but
takes more memory).

’auto’ : do not precompute distances if n_samples * n_clusters > 12 million. This corre-
sponds to about 100MB overhead per job using double precision.

True : always precompute distances

False : never precompute distances

• verbose (int) – Verbosity mode. Default 0

• random_state (Optional[Union[int, numpy.random.RandomState]]) –
Determines random number generation for centroid initialization. Use an int to make the
randomness deterministic.

• copy_x (Optional[bool]) – When pre-computing distances it is more numerically ac-
curate to center the data first. If copy_x is True (default), then the original data is not modi-
fied, ensuring X is C-contiguous. If False, the original data is modified, and put back before
the function returns, but small numerical differences may be introduced by subtracting and
then adding the data mean, in this case it will also not ensure that data is C-contiguous which
may cause a significant slowdown.

• n_jobs (Optional[int]) – The number of jobs to use for the computation. This works
by computing each of the n_init runs in parallel.

None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors.

• algorithm (str) – K-means algorithm to use. The classical EM-style algorithm is “full”.
The “elkan” variation is more efficient by using the triangle inequality, but currently doesn’t
support sparse data. “auto” chooses “elkan” for dense data and “full” for sparse data.

Returns The cluster labels for each vector in the given embedding. The vector at index n in the
embedding will have the label at index n in this returned array

Return type numpy.ndarray

12 Chapter 1. topologic Library Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

topologic Documentation, Release 0.1.9.dev20221013211904

topologic.embedding.clustering.wards_clustering(embedding: numpy.ndarray,
num_clusters: int = 2, affinity:
str = 'euclidean', memory: str = None,
connectivity: numpy.ndarray = None,
compute_full_tree: str = 'auto') →
numpy.ndarray

Uses agglomerative clustering with ward linkage

Recursively merges the pair of clusters that minimally increases a given linkage distance.

Parameters

• embedding (numpy.ndarray) – An n x d array of vectors representing n labels in a d
dimensional space

• num_clusters (int) – int, default=2 The number of clusters to find.

• affinity (str) – string or callable, default: “euclidean” Metric used to compute the
linkage. Can be “euclidean”, “l1”, “l2”, “manhattan”, “cosine”, or ‘precomputed’. If linkage
is “ward”, only “euclidean” is accepted.

• memory (Optional[Union[str, joblib.Memory]]) – None, str or object with
the joblib.Memory interface, optional Used to cache the output of the computation of the
tree. By default, no caching is done. If a string is given, it is the path to the caching
directory.

• connectivity (numpy.ndarray) – array-like or callable, optional Connectivity ma-
trix. Defines for each sample the neighboring samples following a given structure of the
data. This can be a connectivity matrix itself or a callable that transforms the data into
a connectivity matrix, such as derived from kneighbors_graph. Default is None, i.e, the
hierarchical clustering algorithm is unstructured.

• compute_full_tree (Optional[str]) – bool or ‘auto’ (optional) Stop early the
construction of the tree at n_clusters. This is useful to decrease computation time if the
number of clusters is not small compared to the number of samples. This option is useful
only when specifying a connectivity matrix. Note also that when varying the number of
clusters and using caching, it may be advantageous to compute the full tree.

Returns The cluster labels for each vector in the given embedding. The vector at index n in the
embedding will have the label at index n in this returned array

Return type np.ndarray

topologic.embedding.distance package

topologic.embedding.distance.cosine(first_vector: numpy.ndarray, second_vector:
numpy.ndarray)→ float

Distance function for two vectors of equal length.

Cosine distance

See also: https://en.wikipedia.org/wiki/Cosine_similarity

Parameters

• first_vector (numpy.ndarray) – nonzero vector. must be same length as sec-
ond_vector

• second_vector (numpy.ndarray) – nonzero vector. must be same length as
first_vector

1.1. topologic package 13

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.cosine.html
https://en.wikipedia.org/wiki/Cosine_similarity
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

topologic Documentation, Release 0.1.9.dev20221013211904

Returns cosine distance - Resulting range is between 0 and 2. Values closer to 0 are more similar.
Values closer to 2 are approaching total dissimilarity.

Return type float

Examples

>>> cosine(np.array([1,3,5]), np.array([2,3,4]))
0.026964528109766017

topologic.embedding.distance.euclidean(first_vector: numpy.ndarray, second_vector:
numpy.ndarray)→ float

Distance function for two vectors of equal length

Euclidean distance

See also: https://en.wikipedia.org/wiki/Euclidean_distance

Parameters

• first_vector (numpy.ndarray) – nonzero vector. must be same length as sec-
ond_vector

• second_vector (numpy.ndarray) – nonzero vector. must be same length as
first_vector

Returns euclidean distance - Resulting range is a positive real number. Values closer to 0 are more
similar.

Return type float

Examples

>>> euclidean(np.array([1,3,5]), np.array([2,3,4]))
1.4142135623730951

topologic.embedding.distance.mahalanobis(inverse_covariance: numpy.ndarray) →
Callable[[numpy.ndarray, numpy.ndarray],
float]

Unlike cosine and euclidean distances which scipy provides that take in only two vectors, mahalanobis also re-
quires an inverse covariance matrix. This function can be used but first this matrix must be provided and a curried
function handler returned, which can then be passed in to the vector_distance and embedding_distances_from
functions.

See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.mahalanobis.html

Parameters inverse_covariance (np.ndarray) – The inverse covariance matrix

Returns A curried function that now takes in 2 vectors and determines distance based on the in-
verse_covariance provided.

topologic.embedding.distance.valid_distance_functions()→ KeysView[str]
The topologic builtin list of valid distance functions. Any function that return a float when given two np.ndarray
1d vectors is a valid choice, but the only ones we support without any other work are cosine or euclidean.

Returns A set-like view of the string names of the functions we support

topologic.embedding.distance.vector_distance(first_vector: numpy.ndarray, sec-
ond_vector: numpy.ndarray, method:
Union[str, Callable[[numpy.ndarray,
numpy.ndarray], float]] = <function
cosine>)→ float

Vector distance is a function that will do any distance function you would like on two vectors. This is most

14 Chapter 1. topologic Library Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.euclidean.html
https://en.wikipedia.org/wiki/Euclidean_distance
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.mahalanobis.html

topologic Documentation, Release 0.1.9.dev20221013211904

commonly used by changing the method parameter, as a string, from “cosine” to “euclidean” - allowing you to
change your flow based on configuration not on code changes to the actual cosine and euclidean functions.

Parameters

• first_vector (np.ndarray) – A 1d array-like (list, tuple, np.array) that represents
the first vector

• second_vector (np.ndarray) – A 1d array-like (list, tuple, np.array) that represents
the second vector

• method (Union[str, Callable[[np.ndarray, np.ndarray], float]])
– Method can be any distance function that takes in 2 parameters. It can also be the string
mapping to that function (as described by valid_distance_functions()). Note that you can
also provide other functions, such as mahalanobis, but they require more information than
just the comparative vectors.

Returns A float indicating the distance between two vectors.

topologic.embedding.distance.embedding_distances_from(vector: numpy.ndarray,
embedding:
Union[topologic.embedding.embedding_container.EmbeddingContainer,
numpy.ndarray],
method: Union[str,
Callable[[numpy.ndarray,
numpy.ndarray], float]]
= <function cosine>) →
numpy.ndarray

This function will return a 1d np.ndarray of floats by doing a distance calculation from the given vector to each
vector stored in the embedding (likely including itself).

The distance calculation can be provided either as a function reference or a string representation mapped to the
2 standard distance functions we natively support. The functions supported are cosine and euclidean, both of
which are scipy implementations. There is also a mahalanobis generator function that can be used, but first you
must provide it with the inverse covariance matrix necessary for the distance calculations to be performed.

Parameters

• vector (np.ndarray) – A 1d array-like (list, tuple, np.array) that represents the vector
to compare against every other vector in the embedding

• np.ndarray] embedding (Union[EmbeddingContainer,) – The embedding is
either a 2d np array, where each row is a vector and the number of columns is identical to
the length of the vector to compare against.

• method (Union[str, Callable[[np.ndarray, np.ndarray], float]])
– Method can be any distance function that takes in 2 parameters. It can also be the string
mapping to that function (as described by valid_distance_functions()). Note that you can
also provide other functions, such as mahalanobis, but they require more information than
just the comparative vectors.

Returns np.ndarray of dtype float the same length as the count of embedded vectors

Examples

>>> vector = [0.3, 0.4, 0.5]
>>> embedding = np.array([[0.3, 0.4, 0.5], [0.31, 0.44, 0.7]])
>>> embedding_distances_from(vector, embedding, method="cosine") #
→˓using string version of method name
array([0. , 0.00861606])

(continues on next page)

1.1. topologic package 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

topologic Documentation, Release 0.1.9.dev20221013211904

(continued from previous page)

>>> embedding_distances_from(vector, embedding, method=euclidean) #
→˓using function handle
array([0. , 0.20420578])

topologic.embedding.metric package

topologic.embedding.metric.calculate_internal_external_densities(graph: net-
workx.classes.graph.Graph,
partitions:
Dict[Any,
Any],
weight_attribute:
str =
'weight')
→ Tu-
ple[Dict[Any,
List[float]],
Dict[Any,
List[float]]]

Calculates the internal and external densities given a graph and a node membership dictionary. Density is defined
by ‘How to Make the Team: Social Networks vs. Demography as Criteria for Designing Effective Teams’ as
being the mean strength of tie between members of the set. In other words, density is the normalized average of
edge weights by node.

For a given node, the density is the sum of all edge weights divided by the maximum edge weight for that node.

For internal density, only the edge’s whose target node is in the same membership group will be summed.
Similarly, for external density, only the edge’s whose target node is not in the same membership group will be
summed.

See also: Reagans, R., Zuckerman, E., & McEvily, B. (2004). How to Make the Team: Social Networks vs.
Demography as Criteria for Designing Effective Teams. Administrative Science Quarterly, 49(1), 101–133.
https://doi.org/10.2307/4131457

Parameters

• graph – A weighted graph that the internal density will be calculated over

• int] partitions (Dict[any,) – A dictionary for the graph with each key being a
node id and each value is the membership for that node id. Often this will be a partition
dictionary calculated from topologic.louvain.best_partition

• weight_attribute (str) – The key to the weight column on the graph’s edges

Returns A tuple of two dictionaries. The first is the internal density and the second is the external
density

Return type Tuple[Dict[Any, List[float]], Dict[Any, List[float]]]

topologic.embedding.metric.mean_average_precision(graph: net-
workx.classes.graph.Graph,
embedding_container: topo-
logic.embedding.embedding_container.EmbeddingContainer,
distance_metric: str = 'euclidean')
→ float

Mean Average Precision (mAP)

16 Chapter 1. topologic Library Documentation

https://doi.org/10.2307/4131457
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

topologic Documentation, Release 0.1.9.dev20221013211904

A fidelity measure to evaluate the quality of embedding generated with respect to the original unweighted Graph.

Higher mAP value corresponds to a better quality embedding.

Parameters

• G (networkx.Graph) – The unweighted graph for which the embedding is generated

• embedding_container (EmbeddingContainer) – The embedding container gen-
erated for the graph for which the mean average precision will be calculated

• distance_metric (str) – The distance metric to be used to find shortest path between
nodes in the graph and embedding space. Default value for this param is ‘euclidean’, but all
distance metrics available to the scipy.spatial.distance.cdist function are valid.

Returns The mean average precision (mAP <= 1) representing the quality of the embedding

Return type float

topologic.embedding.metric.procrustes_error(target_matrix: numpy.ndarray, ma-
trix_to_rotate: numpy.ndarray) → Tu-
ple[numpy.ndarray, numpy.ndarray]

Procrustes rotation rotates a matrix to maximum similarity with a target matrix minimizing sum of squared
differences. Procrustes rotation is typically used in comparison of ordination results. It is particularly useful in
comparing alternative solutions in multidimensional scaling.

For more information: https://www.rdocumentation.org/packages/vegan/versions/2.4-2/topics/procrustes

Parameters

• target_matrix (numpy.ndarray) – A matrix representing an embedding

• matrix_to_rotate (numpy.ndarray) – A matrix representing an embedding which
will be rotated

Returns The error which is the difference between the two matrices and the transformation matrix

topologic.io package

topologic.io.consolidate_bipartite(csv_dataset: topologic.io.datasets.CsvDataset, ver-
tex_column_index: int, pivot_column_index: int) →
networkx.classes.graph.Graph

class topologic.io.CsvDataset(source_iterator: Union[TextIO, Iterator[str]], has_headers: Op-
tional[bool] = None, dialect: Union[str, csv.Dialect, None] =
None, use_headers: Optional[List[str]] = None, sample_size: int
= 50)

Bases: object

FIELD_SIZE_LIMIT = 2147483647

dialect()→ Union[_csv.Dialect, csv.Dialect]
Note: return type information is broken due to typeshed issues with the csv module.

Returns Dialect used within this CsvDataset for the csv.reader.

Return type Union[_csv.Dialect, csv.Dialect]

headers()→ List[str]

Returns Returns a copy of the headers.

Return type List[str]

reader()→ Iterator[List[str]]

1.1. topologic package 17

https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://www.rdocumentation.org/packages/vegan/versions/2.4-2/topics/procrustes
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/csv.html#csv.Dialect
https://docs.python.org/3/library/stdtypes.html#str

topologic Documentation, Release 0.1.9.dev20221013211904

Returns Returns a properly configured csv reader for a given dialect

Return type Iterator[List[str]]

topologic.io.find_edges(csv_dataset: topologic.io.datasets.CsvDataset, common_values_count: int
= 20, rare_values_count: int = 20)

topologic.io.from_dataset(csv_dataset: topologic.io.datasets.CsvDataset, projec-
tion_function_generator: Callable[[networkx.classes.graph.Graph],
Callable[[List[str]], None]], graph: Op-
tional[networkx.classes.graph.Graph] = None) → net-
workx.classes.graph.Graph

Load a graph from a source csv

The most important part of this function is selecting the appropriate projection function generators. These
functions generate yet another function generator, which in turn generates the function we will use to project the
source CsvDataset into our graph.

The provided projection function generators fall into 3 groups:

• edges we don’t want any metadata for (note that there is no vertex version of this - if you don’t want vertex
metadata, don’t provide a vertex_csv_dataset or function!)

• edges or vertices we want metadata for, but the file is ordered sequentially and we only want the last
metadata to be available in the graph

• edges or vertices we want metadata for, and we wish to keep track of every record of metadata for the edge
or vertex in a list of metadata dictionaries

You can certainly provide your own projection function generators for specialized needs; just ensure they follow
the type signature of Callable[[nx.Graph], Callable[[List[str]], None]]

Parameters

• csv_dataset (CsvDataset) – the dataset to read from row by row

• projection_function_generator (Callable[[nx.Graph],
Callable[[List[str]], None]]) – The projection function generator func-
tion. When called with a nx.Graph, it will return the actual projection function to be used
when processing each row of data.

• graph (nx.Graph) – The graph to populate. If not provided a new one is created of type
nx.Graph. Note that from_dataset can be called repeatedly with different edge or vertex
csv_dataset files to populate the graph more and more. If you seek to take this approach,
ensure you use the same Graph object from the previous calls so that it is continuously
populated with the updated data from new files

Returns the graph object

Return type nx.Graph

topologic.io.from_file(edge_csv_file: TextIO, source_column_index: int, target_column_index: int,
weight_column_index: Optional[int] = None, edge_csv_has_headers:
Optional[bool] = None, edge_dialect: Union[str, csv.Dialect,
None] = None, edge_csv_use_headers: Optional[List[str]] = None,
edge_metadata_behavior: str = 'none', edge_ignored_values: Op-
tional[List[str]] = None, vertex_csv_file: Optional[TextIO] = None,
vertex_column_index: Optional[int] = None, vertex_csv_has_headers:
Optional[bool] = None, vertex_dialect: Union[str, csv.Dialect, None]
= None, vertex_csv_use_headers: Optional[List[str]] = None, ver-
tex_metadata_behavior: str = 'single', vertex_ignored_values: Op-
tional[List[str]] = None, sample_size: int = 50, is_digraph: bool = False)
→ networkx.classes.graph.Graph

18 Chapter 1. topologic Library Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

topologic Documentation, Release 0.1.9.dev20221013211904

This function weaves a lot of graph materialization code into a single call.

The only required arguments are necessary for the bare minimum of creating a graph from an edge list. However,
it is definitely recommended to specify whether the any data files use headers and a dialect; in this way we can
avoid relying on the csv module’s sniffing ability to detect it for us. We only use a modest number of records
to discern the likelihood of headers existing or what to use for column separation (tabs or commas? quotes or
double quotes? Better to specify your own dialect than hope for the best, but the capability exists if you want to
throw caution to the wind.

The entire vertex metadata portion is optional; if no vertex_csv_file is specified (or it is set to None), no at-
tempt will be made to enrich the graph node metadata. The resulting vertex_metadata_types dictionary in the
NamedTuple will be an empty dictionary and can be discarded.

Likewise if no metadata is requested for projection by the edge projection function, the edge_metadata_types
dictionary in the NamedTuple will be an emtpy dictionary and can be discarded.

Lastly, it is important to note that the options for edge_metadata_behavior can only be the 3 string values
specified in the documentation - see the docs for that parameter for details. This is also true for the ver-
tex_metadata_behavior - see the docs for that parameter as well.

Parameters

• edge_csv_file (typing.TextIO) – A csv file that represents the edges of a graph.
This file must contain at minimum two columns: a source column and a target column. It
is suggested there also exist a weight column with some form of numeric value (e.g. 30 or
30.0)

• source_column_index (int) – The column index the source vertex will be in.
Columns start at 0.

• target_column_index (int) – The column index the target vertex will be in.
Columns start at 0.

• weight_column_index (Optional[int]) – The column index the weight vertex
will be in. Columns start at 0. If no weight_column_index is provided, we use a count of
the number of VertexA to VertexB edges that exist and use that as the weight.

• edge_csv_has_headers (Optional[bool]) – Does the source CSV file contain
headers? If so, we will skip the first line. If edge_csv_use_headers is a List[str], we will
use those as headers for mapping any metadata. If it is None, we will use the header row as
the headers, i.e. edge_csv_use_headers will take precedence over any headers in the source
file, if applicable.

• edge_dialect (Optional[Union[csv.Dialect, str]]) – The dialect to use
when parsing the source CSV file. See https://docs.python.org/3/library/csv.html#csv.
Dialect for more details. If the value is None, we attempt to use the csv module’s Snif-
fer class to detect which dialect to use based on a sample of the first 50 lines of the source
csv file. String values can be used if you provide the strings “excel”, “excel-tab”, or “unix”

• edge_csv_use_headers (Optional[List[str]]) – Optional. Headers to use for
the edge file either because the source file does not contain them or because you wish to
override them with your own in a programmatic fashion.

• edge_metadata_behavior (str) – Dictates what extra data, aside from source, tar-
get, and weight, that we use from the provided edge list.

– ”none” brings along no metadata.

– ”single” iterates through the file from top to bottom; any edges between VertexA and
VertexB that had metadata retained during edge projection will be overwritten with the
newest row corresponding with VertexA and VertexB. See also: Clobbering

1.1. topologic package 19

https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/csv.html#csv.Dialect
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/csv.html#csv.Dialect
https://docs.python.org/3/library/csv.html#csv.Dialect
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

topologic Documentation, Release 0.1.9.dev20221013211904

– ”collection” iterates through the file from top to bottom; all new metadata detected be-
tween VertexA and VertexB is appended to the end of a list. All metadata is kept for all
edges unless pruned via normal graph pruning mechanisms.

• edge_ignored_values (List[str]) – Optional. A list of strings to reject retention
of during projection, e.g. “NULL” or “N/A” or “NONE”. Any attribute value found to be
one of these words will be ignored.

• vertex_csv_file (Optional[typing.TextIO]) – A csv file that represents the
vertices of a graph. This file should contain a column whose values correspond with the
vertex ID in either the source or column field in the edges. If no edge exists for a Vertex, no
metadata is retained.

Note: If vertex_csv_file is None or not provided, <u>none</u> of the vertex_* arguments
will be used.

• vertex_column_index (Optional[int]) – The column index the vertex id will be
in. Columns start at 0. See note on vertex_csv_file.

• vertex_csv_has_headers (Optional[bool]) – Does the source CSV file contain
headers? If so, we will skip the first line. If vertex_csv_use_headers is a List[str], we will
use those as headers for mapping any metadata. If it is None, we will use the header row as
the headers, i.e. vertex_csv_use_headers will take precedence over any header in the source
file, if applicable.

• str]] vertex_dialect (Optional[Union[csv.Dialect,) – The dialect to
use when parsing the source CSV file. See https://docs.python.org/3/library/csv.html#csv.
Dialect for more details. If the value is None, we attempt to use the csv module’s Sniffer
class to detect which dialect to use based on a sample of the first 50 lines of the source csv
file. String values can be used if you provide the strings “excel”, “excel-tab”, or “unix”

• vertex_csv_use_headers (Optional[List[str]]) – Optional. Headers to use
for the vertex file either because the source file does not contain them or because you wish
to override them with your own in a programmatic fashion. See note on vertex_csv_file.

• vertex_metadata_behavior (str) – Dictates what we do with vertex metadata. Un-
like edge metadata, there is no need to provide a vertex_metadata_behavior if you have no
vertex metadata you wish to capture. No metadata will be stored for any vertex if it is not
detected in the graph already; if there are no edges to or from VertexA, there will be no
metadata retained for VertexA.

– ”simple” iterates through the file from top to bottom; any vertex that had already captured
metadata through the vertex metadata projection process will be overwritten with the
newest metadata corresponding with that vertex.

– ”collection” iterates through the file from top to bottom; all new metadata detected for a
given vertex will

• vertex_ignored_values (List[str]) – Optional. A list of strings to reject re-
tention of during projection, e.g. “NULL” be appended to a metadata list. or “N/A” or
“NONE”. Any attribute value found to be one of these words will be ignored.

• sample_size (int) – The sample size to extract from the source CSV for use in Sniffing
dialect or has_headers. Please note that this sample_size does NOT advance your underlying
iterator, nor is there any guarantee that the csv Sniffer class will use every row extracted
via sample_size. Setting this above 50 may not have the impact you hope for due to the
csv.Sniffer.has_header function - it will use at most 20 rows.

• is_digraph (bool) – If the data represents an undirected graph or a directed graph.
Default is False.

20 Chapter 1. topologic Library Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/csv.html#csv.Dialect
https://docs.python.org/3/library/csv.html#csv.Dialect
https://docs.python.org/3/library/csv.html#csv.Dialect
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

topologic Documentation, Release 0.1.9.dev20221013211904

Returns The graph populated graph

Return type nx.Graph

class topologic.io.GraphProperties(column_names, potential_edge_column_pairs, com-
mon_column_values, rare_column_values)

Bases: object

column_names()

common_column_values()
Dictionary of column name to set of common values for that column and their counts

potential_edge_column_pairs()

rare_column_values()
Dictionary of column name to set of rare values for that column and their counts

topologic.io.load(edge_file: str, separator: str = 'excel', has_header: bool = True, source_index:
int = 0, target_index: int = 1, weight_index: Optional[int] = None) → net-
workx.classes.graph.Graph

Spartan, on-rails function to load an edge file.

Parameters

• edge_file (str) – String path to an edge file on the filesystem

• separator (str) – Valid values are ‘excel’ or ‘excel-tab’.

• has_header (bool) – True if the edge file has a header line, False if not

• source_index (int) – The column index for the source vertex (default 0)

• target_index (int) – The column index for the target vertex (default 1)

• weight_index (Optional[int]) – The column index for the edge weight (default
None). If None, or if there is no column at weight_index, weights per edge are defaulted to
1.

Returns

class topologic.io.PotentialEdgeColumnPair(source, destination, score)
Bases: object

destination()

score()

source()

topologic.io.tensor_projection_reader(embedding_file_path: str, label_file_path: str)→ Tu-
ple[numpy.ndarray, List[List[str]]]

Reads the embedding and labels stored at the given paths and returns an np.ndarray and list of labels

Parameters

• embedding_file_path (str) – Path to the embedding file

• label_file_path (str) – Path to the labels file

Returns An embedding and list of labels

Return type (numpy.ndarray, List[List[str]])

1.1. topologic package 21

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

topologic Documentation, Release 0.1.9.dev20221013211904

topologic.io.tensor_projection_writer(embedding_file_path: str, label_file_path: str, vec-
tors: numpy.ndarray, labels: Union[List[List[str]],
List[str]], encoding: str = 'utf-8')

Writes an embedding and labels to a given vector file path and label file path in a form that Tensorboard embed-
ding projector can read

Parameters

• embedding_file_path (str) – Path that the embedding file will be written

• label_file_path (str) – Path that the label file will be written

• vectors (numpy.ndarray) – A embedding represented as a np.ndarray

• labels (Union[List[List[str]], List[str]]) – A list of lists where each
inner list is the data for a single row in the embedding or a list of strings where each string
is the single label for that tensor. If you pass in a List[List[str]] you allow multiple labels
for a single tensor.

• encoding (str) – The encoding used to write the file

topologic.partition package

topologic.partition.induce_graph_by_communities(graph: networkx.classes.graph.Graph,
communities: Dict[Any, int],
weight_attribute: str = 'weight')
→ networkx.classes.graph.Graph

Creates a community graph with nodes from the communities dictionary and using the edges of the original
graph to form edges between communities.

Weights are aggregated; you may need to normalize the resulting graph after calling this function.

Note: logs a warning if the size of the community dictionary is less than the size of the provided graph’s
vertexset.

Parameters

• graph (networkx.Graph) – The original graph that contains the edges that will be used
to formulate a new induced community graph

• communities (dict[Any, int]) – The communities dictionary provides a mapping
of original vertex ID to new community ID.

• weight_attribute (str) – The weight attribute on the original graph’s edges to use
when aggregating the weights of the induced community graph. Default is weight.

Returns The induced community graph.

Return type networkx.Graph

Raises

• ValueError – If the graph is None

• ValueError – If the communities dictionary is None

topologic.partition.louvain(graph: networkx.classes.graph.Graph, partition: Optional[Dict[Any,
int]] = None, weight_attribute: str = 'weight', resolution: float = 1.0,
random_state: Any = None)→ Dict[Any, int]

Compute the partition of the graph nodes which maximises the modularity (or try..) using the Louvain heuristics

This is the partition of highest modularity, i.e. the highest partition of the dendrogram generated by the Louvain
algorithm.

22 Chapter 1. topologic Library Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

topologic Documentation, Release 0.1.9.dev20221013211904

This louvain function is a limited wrapper to the community.best_partition function in the python-louvain library
written by Thomas Aynaud.

Parameters

• graph (networkx.Graph) – the networkx graph which is decomposed

• partition (Optional[Dict[Any, int]]) – the algorithm will start using this par-
tition of the nodes. It’s a dictionary where keys are their nodes and values the communities

• weight_attribute (str) – the key in graph to use as weight. Default to ‘weight’

• resolution (float) – Will change the size of the communities, default to 1. represents
the time described in “Laplacian Dynamics and Multiscale Modular Structure in Networks”,
R. Lambiotte, J.-C. Delvenne, M. Barahona

• random_state (Any) – If int, random_state is the seed used by the random number
generator; If RandomState instance, random_state is the random number generator; If None,
the random number generator is the RandomState instance used by np.random.

Returns The partition, with communities numbered from 0 to number of communities

Return type Dict[Any, int]

Raises NetworkXError - If the graph is not Eulerian.

References 1. Blondel, V.D. et al. Fast unfolding of communities in large networks. J. Stat. Mech 10008,
1-12(2008).

topologic.partition.modularity(graph: networkx.classes.graph.Graph, partitions: Dict[Any,
int], weight_attribute: str = 'weight', resolution: float = 1.0)
→ float

Given an undirected graph and a dictionary of vertices to community ids, calculate the modularity.

See also: https://en.wikipedia.org/wiki/Modularity_(networks)

Parameters

• graph (nx.Graph) – An undirected graph

• int] partitions (Dict[Any,) – A dictionary representing a community partition-
ing scheme with the keys being the vertex and the value being a community id. Within
topologic, these community ids are required to be ints.

• weight_attribute (str) – The edge data attribute on the graph that contains a float
weight for the edge.

• resolution (float) – The resolution to use when calculating the modularity.

Returns The modularity quality score for the given network and community partition schema.

Raises

• TypeError – If the graph is not a networkx Graph

• ValueError – If the graph is unweighted

• ValueError – If the graph is directed

topologic.partition.modularity_components(graph: networkx.classes.graph.Graph, parti-
tions: Dict[Any, int], weight_attribute: str =
'weight', resolution: float = 1.0) → Dict[int,
float]

Given an undirected, weighted graph and a community partition dictionary, calculates a modularity quantum for
each community ID. The sum of these quanta is the modularity of the graph and partitions provided.

1.1. topologic package 23

https://python-louvain.readthedocs.io/en/latest/api.html#community.best_partition
https://github.com/taynaud/python-louvain
https://github.com/taynaud
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Modularity_(networks
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

topologic Documentation, Release 0.1.9.dev20221013211904

Parameters

• graph (nx.Graph) – An undirected graph

• int] partitions (Dict[Any,) – A dictionary representing a community partition-
ing scheme with the keys being the vertex and the value being a community id. Within
topologic, these community ids are required to be ints.

• weight_attribute (str) – The edge data attribute on the graph that contains a float
weight for the edge.

• resolution (float) – The resolution to use when calculating the modularity.

Returns A dictionary of the community id to the modularity component of that community

Return type Dict[int, float]

Raises

• TypeError – If the graph is not a networkx Graph

• ValueError – If the graph is unweighted

• ValueError – If the graph is directed

topologic.partition.q_score(partitioned_graph: topologic.partitioned_graph.PartitionedGraph,
weight_column: str = 'weight')→ float

Deprecated: See modularity() for replacement.

Given a topologic PartitionedGraph, return the q score - or modularity of a graph.

See also: https://en.wikipedia.org/wiki/Modularity_(networks)

Parameters

• partitioned_graph (Optional[topologic.PartitionedGraph]) – Parti-
tioned graph contains a dictionary of all the communities in a graph, optimized for best
modularity. This partition structure is used when computing final q_score / modularity of
graph.

• weight_column (str) – weight column to use in computing modularity.

Raises

• UnweightedGraphError – if graph does not contain weight_column in edge attributes

• KeyError – If the partition is not a partition of all graph nodes. This should not oc-
cur if PartitionedGraph is recently created and no changes occurred to the underlying net-
workx.Graph object.

• ValueError – If the graph has no links.

• TypeError – If partitioned_graph is not of type topologic.PartitionedGraph

Returns q_score, or modularity, of this graph using the provided partitioning scheme.

Return type float

24 Chapter 1. topologic Library Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/Modularity_(networks
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#float

topologic Documentation, Release 0.1.9.dev20221013211904

topologic.projection package

topologic.projections provides a canned series of source-to-Graph projection functions.

The function return type Callable[[nx.Graph], Callable[[List[str]], None]] is the cornerstone to every projection func-
tion.

You can, and should, define any function you want as long as it complies with that return type. The first function should
take in any Dataset source-specific configuration information; information necessary to tell a projection function how
your source data is laid out and should be used to apply changes to the networkx.Graph.

The 1st inner function is used by the topologic.io.csv_loader.from_dataset function - it applies the networkx.Graph to
update.

The 2nd inner function is also used by topologic.io.csv_loader.from_dataset to take each record from the Dataset
source and use it to apply this modification to the networkx.Graph.

Graph metadata format:

If a graph is to have metadata on its vertices or edges, it shall always be in the form of:

{
"weight": 1.0,
"attributes": [

{ "key": "value1", "anotherKey": "anotherValue", "aDifferentKey":
→˓"aDifferentValue" },

{ "key": "value2", "aDifferentKey": "aDifferentValue2" }
]

}

Notes: - Keys are always of type str - Values are always stored as type str, but could be a more narrowly bounded type
like int or float. - Just because a key exists in one row of the attributes List does not mean it will exist in any other. Do
not presume a constant “shape” of the dictionaries of edge attributes.

topologic.projection.edge_ignore_metadata(source_index: int, target_index: int,
weight_index: Optional[int] = None) →
Callable[[networkx.classes.graph.Graph],
Callable[[List[str]], None]]

Drops all metadata. Creates graph solely based on source, target, and optional weight.

See package docstrings for more details on these currying functions.

Parameters

• source_index (int) – The index in the CSV data row to use as the source node in this
edge

• target_index (int) – The index in the CSV data row to use as the target node in this
edge

• weight_index (Optional[int]) – Optional. The index in the CSV data row to use
as the weight of the edge. If no weight is provided, all records of an edge are presumed
to have a weight of 1. Duplicates of an edge will have their weights (or inferred weight)
aggregated into a single value.

Returns A partially applied function that partially applies yet more arguments prior to the final
operation function

Return type Callable[[networkx.Graph], Callable[[List[str]], None]]

1.1. topologic package 25

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

topologic Documentation, Release 0.1.9.dev20221013211904

topologic.projection.edge_with_collection_metadata(headers: List[str], source_index:
int, target_index: int,
weight_index: Optional[int]
= None, ignored_values: Op-
tional[List[str]] = None) →
Callable[[networkx.classes.graph.Graph],
Callable[[List[str]], None]]

Some graph algorithms have undefined behavior over multigraphs. To skirt this limitation, we allow the data to
represent a multigraph, though we collapse it into a non-multigraph. We do this by aggregating the weights, and
in this case we take any extra metadata in the edge source and project it, along with headers, into an attribute
dictionary. This dictionary is then added to a List of any previous attribute dictionaries for the same source and
target, so as to not clobber any metadata.

See package docstrings for more details on these currying functions.

Parameters

• headers (List[str]) – Headers from a CSV row to use as metadata attribute keys

• source_index (int) – The index in the CSV data row to use as the source node in this
edge

• target_index (int) – The index in the CSV data row to use as the target node in this
edge

• weight_index (Optional[int]) – Optional. The index in the CSV data row to use
as the weight of the edge. If no weight is provided, all records of an edge are presumed
to have a weight of 1. Duplicates of an edge will have their weights (or inferred weight)
aggregated into a single value.

• ignored_values (Optional[List[str]]) – Optional. A list of values to ignore if
present in the row, such as “NULL” or “”

Returns A partially applied function that partially applies yet more arguments prior to the final
operation function

Return type Callable[[networkx.Graph], Callable[[List[str]], None]]

topologic.projection.edge_with_single_metadata(headers: List[str], source_index: int,
target_index: int, weight_index: Op-
tional[int] = None, ignored_values:
Optional[List[str]] = None) →
Callable[[networkx.classes.graph.Graph],
Callable[[List[str]], None]]

Will load edges into graph even if they are a multigraph. However, aside from weight, the multigraph attributes
are ignored and the last record to be processed for that source and target will have its metadata retained and all
prior metadata dropped.

See package docstrings for more details on these currying functions.

Parameters

• headers (List[str]) – Headers from a CSV row to use as metadata attribute keys

• source_index (int) – The index in the CSV data row to use as the source node in this
edge

• target_index (int) – The index in the CSV data row to use as the target node in this
edge

• weight_index (Optional[int[) – Optional. The index in the CSV data row to use
as the weight of the edge. If no weight is provided, all records of an edge are presumed

26 Chapter 1. topologic Library Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

topologic Documentation, Release 0.1.9.dev20221013211904

to have a weight of 1. Duplicates of an edge will have their weights (or inferred weight)
aggregated into a single value.

• ignored_values (Optional[List[str]]) – Optional. A list of values to ignore if
present in the row, such as “NULL” or “”

Returns A partially applied function that partially applies yet more arguments prior to the final
operation function

Return type Callable[[networkx.Graph], Callable[[List[str]], None]]

topologic.projection.vertex_with_collection_metadata(headers: List[str], ver-
tex_id_index: int, ig-
nored_values: Op-
tional[List[str]] = None) →
Callable[[networkx.classes.graph.Graph],
Callable[[List[str]], None]]

This function is an unlikely function to use; if you have vertex metadata you wish to load into the net-
workx.Graph where the vertex_id is repeated, it would be a better choice for you to compact those into a single
record with a specific, string representable format of multiple metadata entries. However, this function can be
used when you aren’t sure what you have. Like the edge_with_collection_metadata projection, this function
will create a List of dictionaries for each instance of metadata it sees for a given vertex_id.

Note: If the vertex_id for a given row does not exist in the graph, NO METADATA WILL BE RETAINED.

See package docstrings for more details on these currying functions.

Parameters

• headers (List[str]) – Headers from a CSV row to use as metadata attribute keys

• vertex_id_index (int) – The index in the CSV data row to use as the vertex id in this
graph

• ignored_values (Optional[List[str]]) – Optional. A list of values to ignore if
present in the row, such as “NULL” or “”

Returns A partially applied function that partially applies yet more arguments prior to the final
operation function

Return type Callable[[networkx.Graph], Callable[[List[str]], None]]

topologic.projection.vertex_with_single_metadata(headers: List[str], ver-
tex_id_index: int, ignored_values:
List[str] = None) →
Callable[[networkx.classes.graph.Graph],
Callable[[List[str]], None]]

Function will project vertex metadata into the graph. If prior data exists for the vertex_id, the later instance of
data for the vertex_id will clobber it.

Note: If the vertex_id for a given row does not exist in the graph, NO METADATA WILL BE RETAINED.

See package docstrings for more details on these currying functions and on the attributes datastructure.

Parameters

• headers (List[str]) – Headers from a CSV row to use as metadata attribute keys

• vertex_id_index (int) – The index in the CSV data row to use as the vertex id in this
graph

• ignored_values (Optional[List[str]]) – Optional. A list of values to ignore if
present in the row, such as “NULL” or “”

1.1. topologic package 27

https://docs.python.org/3/library/stdtypes.html#str
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

topologic Documentation, Release 0.1.9.dev20221013211904

Returns A partially applied function that partially applies yet more arguments prior to the final
operation function

Return type Callable[[networkx.Graph], Callable[[List[str]], None]]

topologic.similarity package

topologic.similarity.ari(primary_partition: Dict[Any, int], test_partition: Dict[Any, int])→ float
Given two partition schemas, a primary partition mapping (the most accurate representation of truth) and the
test partition mapping (to be scored against that accurate representation of truth), calculate the Adjusted Rand
Index.

See https://en.wikipedia.org/wiki/Rand_index

Parameters

• int] primary_partition (Dict[Any,) – The most accurate representation of
truth for cluster or community membership of nodes. The keys are vertex labels and the
values are the cluster/community/partition labels.

• int] test_partition (Dict[Any,) – The partition mapping to compare against
the primary partition. The keys are vertex labels and the values are the clus-
ter/community/partition labels.

Returns The adjusted rand index for the two mappings

Rtype float

Raises ValueError – If the primary partition and test partition do not have an identical vertex
label set.

topologic.statistics package

topologic.statistics.cut_edges_by_weight(graph: networkx.classes.graph.Graph,
cut_threshold: Union[int, float], cut_process:
topologic.statistics.make_cuts.MakeCuts,
weight_attribute: str = 'weight', prune_isolates:
bool = False)→ networkx.classes.graph.Graph

Given a graph, a cut threshold, and a cut_process, create a new Graph that contains only the edges that are not
pruned.

Note: Edges without a weight_attribute field will be excluded from these cuts. Enable logging to view any
messages about edges without weights.

Parameters

• graph (networkx.Graph) – The graph that will be copied and pruned.

• cut_threshold (Union[int, float]) – The threshold for making cuts based on
weight.

• cut_process (MakeCuts) – Describes how we should make the cut; cut all edges larger
or smaller than the cut_threshold, and whether exclusive or inclusive.

• weight_attribute (str) – The weight attribute name in the data dictionary. Default
is weight.

• prune_isolates (bool) – If true, remove any vertex that no longer has an edge. Note
that this only prunes vertices which have edges to be pruned; any isolate vertex prior to any
edge cut will be retained.

28 Chapter 1. topologic Library Documentation

https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Rand_index
https://docs.python.org/3/library/exceptions.html#ValueError
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

topologic Documentation, Release 0.1.9.dev20221013211904

Returns Pruned copy of the graph

Return type networkx.Graph

topologic.statistics.cut_vertices_by_betweenness_centrality(graph: net-
workx.classes.graph.Graph,
cut_threshold:
Union[int, float],
cut_process: topo-
logic.statistics.make_cuts.MakeCuts,
num_random_samples:
Optional[int] =
None, normal-
ized: bool = True,
weight_attribute:
Optional[str]
= None, in-
clude_endpoints:
bool = False,
random_seed:
Union[int, ran-
dom.Random, None]
= None) → net-
workx.classes.graph.Graph

Given a graph and a cut_threshold and a cut_process, return a copy of the graph with the vertices outside of the
cut_threshold.

The betweenness centrality calculation can take advantage of networkx’ implementation of randomized sam-
pling by providing num_random_samples (or k, in networkx betweenness_centrality nomenclature).

See: https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.
centrality.betweenness_centrality.html for more details.

Parameters

• graph (networkx.Graph) – The graph that will be copied and pruned.

• cut_threshold (Union[int, float]) – The threshold for making cuts based on
betweenness centrality.

• cut_process (MakeCuts) – Describes how we should make the cut; cut all edges larger
or smaller than the cut_threshold, and whether exclusive or inclusive.

• num_random_samples (Optional[int]) – Use num_random_samples for vertex
samples to estimate betweenness. num_random_samples should be <= len(graph.nodes).
The larger num_random_samples is, the better the approximation.

• normalized (bool) – If True the betweenness values are normalized by 2/((n-1)(n-2))
for graphs, and 1/((n-1)(n-2)) for directed graphs where n is the number of vertices in the
graph.

• weight_attribute (Optional[str]) – If None, all edge weights are considered
equal. Otherwise holds the name of the edge attribute used as weight.

• include_endpoints (bool) – If True include the endpoints in the shortest path counts.

• random_seed (Optional[Union[int, random.Random]]) – Random seed or
preconfigured random instance to be used for randomly selecting random samples. Only
used if num_random_samples is set. None will generate a new random state. Specifying a
random state will provide consistent results between runs.

1.1. topologic package 29

https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.centrality.betweenness_centrality.html
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.centrality.betweenness_centrality.html
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/random.html#random.Random

topologic Documentation, Release 0.1.9.dev20221013211904

Returns Pruned copy of the graph

Return type networkx.Graph

topologic.statistics.cut_vertices_by_degree_centrality(graph: net-
workx.classes.graph.Graph,
cut_threshold: Union[int,
float], cut_process: topo-
logic.statistics.make_cuts.MakeCuts)
→ net-
workx.classes.graph.Graph

Given a graph and a cut_threshold and a cut_process, return a copy of the graph with the vertices outside of the
cut_threshold.

Parameters

• graph (networkx.Graph) – The graph that will be copied and pruned.

• cut_threshold (Union[int, float]) – The threshold for making cuts based on
degree centrality.

• cut_process (MakeCuts) – Describes how we should make the cut; cut all edges larger
or smaller than the cut_threshold, and whether exclusive or inclusive.

Returns Pruned copy of the graph

Return type networkx.Graph

class topologic.statistics.DefinedHistogram
Bases: tuple

Contains the histogram and the edges of the bins in the histogram.

The bin_edges will have a length 1 greater than the histogram, as it defines the minimal and maximal edges as
well as each edge in between.

property bin_edges
Alias for field number 1

property histogram
Alias for field number 0

topologic.statistics.filter_function_for_make_cuts(cut_threshold: Union[int,
float], cut_process: topo-
logic.statistics.make_cuts.MakeCuts)
→ Callable[[Tuple[Any,
Union[int, float]]], bool]

30 Chapter 1. topologic Library Documentation

https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#tuple

topologic Documentation, Release 0.1.9.dev20221013211904

topologic.statistics.histogram_betweenness_centrality(graph: net-
workx.classes.graph.Graph,
bin_directive: Union[int,
List[Union[float, int]],
numpy.ndarray, str] = 10,
num_random_samples:
Optional[int] = None,
normalized: bool = True,
weight_attribute: Op-
tional[str] = None, in-
clude_endpoints: bool
= False, random_seed:
Union[int, random.Random,
None] = None) → topo-
logic.statistics.defined_histogram.DefinedHistogram

Generates a histogram of the vertex betweenness centrality of the provided graph. Histogram function is funda-
mentally proxied through to numpy’s histogram function, and bin selection follows numpy.histogram processes.

The betweenness centrality calculation can take advantage of networkx’ implementation of randomized sam-
pling by providing num_random_samples (or k, in networkx betweenness_centrality nomenclature).

See: https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.
centrality.betweenness_centrality.html for more details.

Parameters

• graph (networkx.Graph) – the graph. No changes will be made to it.

• bin_directive (Union[int, List[Union[float, int]], numpy.
ndarray, str]) – Is passed directly through to numpy’s “histogram” (and thus,
“histogram_bin_edges”) functions. See: https://docs.scipy.org/doc/numpy-1.15.1/
reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges In
short description: if an int is provided, we use bin_directive number of equal range bins. If
a sequence is provided, these bin edges will be used and can be sized to whatever size you
prefer. Note that the np.ndarray should be ndim=1 and the values should be float or int.

• num_random_samples (Optional[int]) – Use num_random_samples for vertex
samples to estimate betweeness. num_random_samples should be <= len(graph.nodes). The
larger num_random_samples is, the better the approximation.

• normalized (bool) – If True the betweenness values are normalized by 2/((n-1)(n-2))
for graphs, and 1/((n-1)(n-2)) for directed graphs where n is the number of vertices in the
graph.

• weight_attribute (Optional[str]) – If None, all edge weights are considered
equal. Otherwise holds the name of the edge attribute used as weight.

• include_endpoints (bool) – If True include the endpoints in the shortest path counts.

• random_seed (Optional[Union[int, random.Random]]) – Random seed or
preconfigured random instance to be used for randomly selecting random samples. Only
used if num_random_samples is set. None will generate a new random state. Specifying a
random state will provide consistent results between runs.

Returns A named tuple that contains the histogram and the bin_edges used in the histogram

Return type DefinedHistogram

1.1. topologic package 31

https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.centrality.betweenness_centrality.html
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.centrality.betweenness_centrality.html
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/random.html#random.Random

topologic Documentation, Release 0.1.9.dev20221013211904

topologic.statistics.histogram_degree_centrality(graph: net-
workx.classes.graph.Graph,
bin_directive: Union[int,
List[Union[float, int]],
numpy.ndarray, str] = 10) → topo-
logic.statistics.defined_histogram.DefinedHistogram

Generates a histogram of the vertex degree centrality of the provided graph. Histogram function is fundamentally
proxied through to numpy’s histogram function, and bin selection follows numpy.histogram processes.

Parameters

• graph (networkx.Graph) – the graph. No changes will be made to it.

• bin_directive (Union[int, List[Union[float, int]], numpy.
ndarray, str]) – Is passed directly through to numpy’s “histogram” (and thus,
“histogram_bin_edges”) functions. See: https://docs.scipy.org/doc/numpy-1.15.1/
reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges In
short description: if an int is provided, we use bin_directive number of equal range bins. If
a sequence is provided, these bin edges will be used and can be sized to whatever size you
prefer Note that the np.ndarray should be ndim=1 and the values should be float or int.

Returns A named tuple that contains the histogram and the bin_edges used in the histogram

Return type DefinedHistogram

topologic.statistics.histogram_edge_weight(graph: networkx.classes.graph.Graph,
bin_directive: Union[int, List[Union[float,
int]], numpy.ndarray, str] = 10,
weight_attribute: str = 'weight') → topo-
logic.statistics.defined_histogram.DefinedHistogram

Generates a histogram of the edge weights of the provided graph. Histogram function is fundamentally proxied
through to numpy’s histogram function, and bin selection follows numpy.histogram processes.

Note: Edges without a weight_attribute field will be excluded from this histogram. Enable logging to view any
messages about edges without weights.

Parameters

• graph (networkx.Graph) – the graph. No changes will be made to it.

• bin_directive (Union[int, List[Union[float, int]], numpy.
ndarray, str]) – Is passed directly through to numpy’s “histogram” (and thus,
“histogram_bin_edges”) functions. See: https://docs.scipy.org/doc/numpy-1.15.1/
reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges In
short description: if an int is provided, we use bin_directive number of equal range bins. If
a sequence is provided, these bin edges will be used and can be sized to whatever size you
prefer Note that the np.ndarray should be ndim=1 and the values should be float or int.

• weight_attribute (str) – The weight attribute name in the data dictionary. Default
is weight.

Returns A named tuple that contains the histogram and the bin_edges used in the histogram

Return type DefinedHistogram

class topologic.statistics.MakeCuts
Bases: enum.Enum

An enumeration.

LARGER_THAN_EXCLUSIVE = 2

LARGER_THAN_INCLUSIVE = 1

32 Chapter 1. topologic Library Documentation

https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum

topologic Documentation, Release 0.1.9.dev20221013211904

SMALLER_THAN_EXCLUSIVE = 4

SMALLER_THAN_INCLUSIVE = 3

1.1. topologic package 33

topologic Documentation, Release 0.1.9.dev20221013211904

34 Chapter 1. topologic Library Documentation

CHAPTER

TWO

SYSTEM REQUIREMENTS

topologic is written for Python 3.6. It is well tested under Python 3.7 and may work well with Python 3.8. It makes
use of type hinting heavily, so it is not likely to work with Python 3.5.

In addition, some of the library dependencies for topologic must be built on your system, and will require C++
build tools to complete. If you don’t already have these, the install process will fail, and you can try some of the
following steps to fix your issues.

2.1 Windows

Visit Visual Studio and select the Tools for Visual Studio 2017 header. Then download and install the
Build Tools for Visual Studio 2017.

2.2 Ubuntu Linux

If using Python3.6:

sudo apt install build-essential python3.6-dev

If using Python3.7:

sudo apt install build-essential python3.7-dev

35

https://visualstudio.microsoft.com/downloads/

topologic Documentation, Release 0.1.9.dev20221013211904

36 Chapter 2. System Requirements

CHAPTER

THREE

RELEASE NOTES

3.1 0.1.8

• Fix an issue with sorting non integer node ids when calculating omnibus embeddings

3.2 0.1.7

• Use the union graph largest connected component strategy to calculate the omnibus embedding

3.3 0.1.6

• Fix an issue that caused inf and nan when using LSE omnibus embedding

3.4 0.1.5

• Fix a bug in omnibus embedding where augmentation happened before the graphs were reduced to common
nodes

3.5 0.1.4

• Fixed a bug during Laplacian matrix construction for directed graphs

3.6 0.1.3

• Added modularity and modularity_components functions, and deprecated q_score.

37

topologic Documentation, Release 0.1.9.dev20221013211904

3.7 0.1.2

• Rename self_loop_augmentation to diagonal_augmentation and use weighted degree to per-
form calculation instead of degree only.

• Fix bug when getting the length of edges when performing graph augmentations.

3.8 0.1.1

• Issue 29 Fixed bug in topologic.io.from_dataset where an empty networkx graph object (Graph,
DiGraph, etc) was being treated as if no networkx Graph object were provided at all.

• Added is_digraph parameter to topologic.io.from_file. This parameter defaults to False for orig-
inal behavior. Setting it to True will create a networkx DiGraph object instead.

3.9 0.1.0

• Initial release

38 Chapter 3. Release Notes

https://github.com/microsoft/topologic/issues/29

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

39

topologic Documentation, Release 0.1.9.dev20221013211904

40 Chapter 4. Indices and tables

PYTHON MODULE INDEX

t
topologic, 1
topologic.embedding, 2
topologic.embedding.clustering, 10
topologic.embedding.distance, 13
topologic.embedding.metric, 16
topologic.io, 17
topologic.partition, 22
topologic.projection, 25
topologic.similarity, 28
topologic.statistics, 28

41

topologic Documentation, Release 0.1.9.dev20221013211904

42 Python Module Index

INDEX

A
adjacency_embedding() (in module topo-

logic.embedding), 2
ADJACENCY_SPECTRAL_EMBEDDING (topo-

logic.embedding.EmbeddingMethod attribute),
3

ari() (in module topologic.similarity), 28

B
bin_edges() (topologic.statistics.DefinedHistogram

property), 30

C
calculate_internal_external_densities()

(in module topologic.embedding.metric), 16
column_names() (topologic.io.GraphProperties

method), 21
common_column_values() (topo-

logic.io.GraphProperties method), 21
community_partitions() (topo-

logic.PartitionedGraph property), 2
connected_components_generator() (in mod-

ule topologic), 1
consolidate_bipartite() (in module topo-

logic.io), 17
cosine() (in module topologic.embedding.distance),

13
CsvDataset (class in topologic.io), 17
cut_edges_by_weight() (in module topo-

logic.statistics), 28
cut_vertices_by_betweenness_centrality()

(in module topologic.statistics), 29
cut_vertices_by_degree_centrality() (in

module topologic.statistics), 30

D
dbscan() (in module topologic.embedding.clustering),

10
DefinedHistogram (class in topologic.statistics), 30
destination() (topo-

logic.io.PotentialEdgeColumnPair method),
21

diagonal_augmentation() (in module topologic),
2

dialect() (topologic.io.CsvDataset method), 17
DialectException, 1

E
edge_ignore_metadata() (in module topo-

logic.projection), 25
EDGE_WEIGHT (topologic.embedding.SampleMethod

attribute), 8
edge_with_collection_metadata() (in mod-

ule topologic.projection), 25
edge_with_single_metadata() (in module topo-

logic.projection), 26
embedding() (topologic.embedding.EmbeddingContainer

property), 3
embedding() (topologic.embedding.OutOfSampleEmbeddingContainer

property), 7
embedding_distances_from() (in module topo-

logic.embedding.distance), 15
EmbeddingContainer (class in topo-

logic.embedding), 3
EmbeddingMethod (class in topologic.embedding), 3
euclidean() (in module topo-

logic.embedding.distance), 14

F
FIELD_SIZE_LIMIT (topologic.io.CsvDataset at-

tribute), 17
filter_function_for_make_cuts() (in mod-

ule topologic.statistics), 30
find_edges() (in module topologic.io), 18
find_elbows() (in module topologic.embedding), 3
from_dataset() (in module topologic.io), 18
from_file() (in module topologic.io), 18

G
gaussian_mixture_model() (in module topo-

logic.embedding.clustering), 11
generate_omnibus_matrix() (in module topo-

logic.embedding), 4
graph() (topologic.PartitionedGraph property), 2

43

topologic Documentation, Release 0.1.9.dev20221013211904

GraphProperties (class in topologic.io), 21

H
headers() (topologic.io.CsvDataset method), 17
histogram() (topologic.statistics.DefinedHistogram

property), 30
histogram_betweenness_centrality() (in

module topologic.statistics), 30
histogram_degree_centrality() (in module

topologic.statistics), 31
histogram_edge_weight() (in module topo-

logic.statistics), 32

I
induce_graph_by_communities() (in module

topologic.partition), 22
InvalidGraphError, 1

K
kmeans() (in module topologic.embedding.clustering),

11

L
laplacian_embedding() (in module topo-

logic.embedding), 4
LAPLACIAN_SPECTRAL_EMBEDDING (topo-

logic.embedding.EmbeddingMethod attribute),
3

LARGER_THAN_EXCLUSIVE (topo-
logic.statistics.MakeCuts attribute), 32

LARGER_THAN_INCLUSIVE (topo-
logic.statistics.MakeCuts attribute), 32

largest_connected_component() (in module
topologic), 1

load() (in module topologic.io), 21
louvain() (in module topologic.partition), 22

M
mahalanobis() (in module topo-

logic.embedding.distance), 14
MakeCuts (class in topologic.statistics), 32
mean_average_precision() (in module topo-

logic.embedding.metric), 16
modularity() (in module topologic.partition), 23
modularity_components() (in module topo-

logic.partition), 23

N
node2vec_embedding() (in module topo-

logic.embedding), 5
number_connected_components() (in module

topologic), 1

O
omnibus_embedding() (in module topo-

logic.embedding), 6
OutOfSampleEmbeddingContainer (class in

topologic.embedding), 7

P
PartitionedGraph (class in topologic), 2
pca() (in module topologic.embedding), 7
potential_edge_column_pairs() (topo-

logic.io.GraphProperties method), 21
PotentialEdgeColumnPair (class in topologic.io),

21
procrustes_error() (in module topo-

logic.embedding.metric), 17

Q
q_score() (in module topologic.partition), 24

R
rare_column_values() (topo-

logic.io.GraphProperties method), 21
reader() (topologic.io.CsvDataset method), 17

S
sample_graph_by_edge_weight() (in module

topologic.embedding), 8
sample_graph_by_vertex_degree() (in mod-

ule topologic.embedding), 8
SampleMethod (class in topologic.embedding), 8
score() (topologic.io.PotentialEdgeColumnPair

method), 21
sigma() (topologic.embedding.OutOfSampleEmbeddingContainer

property), 7
SMALLER_THAN_EXCLUSIVE (topo-

logic.statistics.MakeCuts attribute), 32
SMALLER_THAN_INCLUSIVE (topo-

logic.statistics.MakeCuts attribute), 33
source() (topologic.io.PotentialEdgeColumnPair

method), 21
starting_index_of_oos_embedding() (topo-

logic.embedding.OutOfSampleEmbeddingContainer
property), 7

T
tensor_projection_reader() (in module topo-

logic.io), 21
tensor_projection_writer() (in module topo-

logic.io), 21
to_dictionary() (topo-

logic.embedding.EmbeddingContainer
method), 3

44 Index

topologic Documentation, Release 0.1.9.dev20221013211904

to_dictionary() (topo-
logic.embedding.OutOfSampleEmbeddingContainer
method), 7

topologic (module), 1
topologic.embedding (module), 2
topologic.embedding.clustering (module),

10
topologic.embedding.distance (module), 13
topologic.embedding.metric (module), 16
topologic.io (module), 17
topologic.partition (module), 22
topologic.projection (module), 25
topologic.similarity (module), 28
topologic.statistics (module), 28
tsne() (in module topologic.embedding), 8

U
u() (topologic.embedding.OutOfSampleEmbeddingContainer

property), 7
UnweightedGraphError, 2

V
valid_distance_functions() (in module topo-

logic.embedding.distance), 14
vector_distance() (in module topo-

logic.embedding.distance), 14
VERTEX_DEGREE (topologic.embedding.SampleMethod

attribute), 8
vertex_labels() (topo-

logic.embedding.EmbeddingContainer prop-
erty), 3

vertex_labels() (topo-
logic.embedding.OutOfSampleEmbeddingContainer
property), 7

vertex_labels_failing_inference() (topo-
logic.embedding.OutOfSampleEmbeddingContainer
property), 7

vertex_with_collection_metadata() (in
module topologic.projection), 27

vertex_with_single_metadata() (in module
topologic.projection), 27

W
wards_clustering() (in module topo-

logic.embedding.clustering), 12

Index 45

	topologic Library Documentation
	topologic package

	System Requirements
	Windows
	Ubuntu Linux

	Release Notes
	0.1.8
	0.1.7
	0.1.6
	0.1.5
	0.1.4
	0.1.3
	0.1.2
	0.1.1
	0.1.0

	Indices and tables
	Python Module Index
	Index

